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Abstract—As one type of themost popular cloud storage services, OpenStack Swift and its follow-up systems replicate each object

acrossmultiple storage nodes and leverage object sync protocols to achieve high reliability and eventual consistency. The performance

of object sync protocols heavily relies on two key parameters: r (number of replicas for each object) and n (number of objects hosted by

each storage node). In existing tutorials and demos, the configurations are usually r ¼ 3 and n < 1;000 by default, and the sync process

seems to performwell. However, we discover in data-intensive scenarios, e.g., when r > 3 and n� 1;000, the sync process is

significantly delayed and producesmassive network overhead, referred to as the sync bottleneck problem. By reviewing the source code

of OpenStack Swift, we find that its object sync protocol utilizes a fairly simple and network-intensive approach to check the consistency

among replicas of objects. Hence in a sync round, the number of exchanged hash values per node is Qðn� rÞ. To tackle the problem, we

propose a lightweight and practical object sync protocol, LightSync, which not only remarkably reduces the sync overhead, but also

preserves high reliability and eventual consistency. LightSync derives this capability from three novel building blocks: 1) Hashing of

Hashes, which aggregates all the h hash values of each data partition into a single but representative hash value with theMerkle tree; 2)

Circular Hash Checking, which checks the consistency of different partition replicas by only sending the aggregated hash value to the

clockwise neighbor; and 3) Failed Neighbor Handling, which properly detects and handles node failures withmoderate overhead to

effectively strengthen the robustness of LightSync. The design of LightSync offers provable guarantee on reducing the per-node network

overhead fromQðn� rÞ to QðnhÞ. Furthermore, we have implemented LightSync as an open-source patch and adopted it to OpenStack

Swift, thus reducing the sync delay by up to 879� and the network overhead by up to 47.5�.

Index Terms—Cloud storage, OpenStack Swift, object synchronization, performance bottleneck

Ç

1 INTRODUCTION

TODAY’S cloud storage services, e.g., Amazon S3, Google
Cloud Storage, Windows Azure Storage, Aliyun OSS,

and Rackspace Cloud Files, provide highly available and
robust infrastructure support to upper-layer applications [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10]. As one type of the most
popular open-source cloud storage services, OpenStack
Swift and its follow-up systems such as Riak S2 and Apache
Cassandra (called OpenStack Swift-like systems) have been
used by many organizations and companies like Rackspace,

UnitedStack, Sina Weibo, eBay, Instagram, Reddit, and
AiMED Stat. In order to offer high data reliability and dura-
bility, OpenStack Swift-like systems typically replicate each
data object across multiple storage nodes, thus leading to
the need of maintaining consistency among the replicas.
Almost all existing OpenStack Swift-like systems employ
the eventual consistency model [11] to offer consistency guar-
antees to the hosted data objects’ replica versions. Here,
eventual consistency means that if no new update is made
to a given object, eventually all read/write accesses to
that object would return the last updated value. For Open-
Stack Swift-like systems, the eventual consistency model is
embodied by leveraging an object sync(hronization) protocol
to check different replica versions of each object.

While OpenStack Swift-like systems have been widely
used, we still hope to deep understand how well they
achieve the consistency in practice. To this end, the first part
of our work is to make a lab-scale case study based on Open-
Stack Swift. In our realistic deployment and experiments, we
observe that OpenStack Swift indeed performs well (with
just a few seconds of sync delay and a few MBs of network
overhead) for regular configuration (as proposed in most
existing tutorials and demonstrations [12], [13], [14]), i.e.,
r ¼ 3 and n < 1;000. Here r denotes the number of replicas
for each object, and n denotes the number of objects hosted
by each storage node. Nevertheless, we find that in data-
intensive scenarios, e.g., when r > 3 and n� 1;000, the
object sync process is significantly delayed and produces
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massive network overhead.1 For example, when r ¼ 5
and n ¼ 4M, the sync delay is as long as 58 minutes and
there are 3.63 GB of network messages exchanged by every
node in a single sync round.

The exposed phenomenon is referred to as the sync bottle-
neck problem of OpenStack Swift, which also occurs in Riak
S2 and Cassandra. Moreover, the problem is considerably
aggravated in the presence of data updates (e.g., object crea-
tions and deletions) and node failures (the worst case).
In particular, when node failures occur, the failed node
needs multiple (typically 3 to 4) sync rounds to converge,
i.e., to re-enter a stable state. Furthermore, our experiments
show that this problem cannot be fundamentally addressed
by employing parallelism techniques, i.e., by increasing the
number of sync threads Nthread (detailed in Section 3.7).

Therefore, the sync bottleneck problem would easily lead
to negative influences because many of today’s data-centric
applications have to configure their back-ends with r > 3
and n� 1;000 while still desiring for quick (eventual) con-
sistency and low overhead. Such kinds of applications are
pretty common in practice: first, in a realistic object storage
system the number of objects is typically far more than
1000; second and more importantly, a larger r (exceeding 3)
is often adopted by systems that require faster access to
numerous small objects [15], a higher level of fault toler-
ance [16], or better geo-distributed availability [17].

Driven by the above observations, the second part of our
work is to investigate the source code of OpenStack Swift,
so as to thoroughly understand why the sync bottleneck
problem happens. In particular, we find that during each
sync round, the storage node for each data partition (say P )
compares its local fingerprint of P with the fingerprints of all
the other r� 1 replicas of P . This sync process introduces
network overhead of rðr� 1Þ sync messages. Specifically, as
a typical storage technique, partitioning allows the entire
object storage space to be divided into smaller pieces, where
each piece is called a (data) partition. The fingerprint of a
partition is denoted by a file which records the hash values
of all the h suffix directories included in this partition.
Therefore, each sync message contains h hash values.

More in detail, as one storage node can host multiple
(� n

h) partitions, the number of exchanged hash values by
each storage node is as large as Qðn� rÞ in a single sync
round. This brings about considerable unnecessary network
overhead. In addition, the aforementioned shortcomings
are also found in other OpenStack Swift-like systems such
as Riak S2 (the active anti-entropy component [18]) and
Cassandra (the anti-entropy node repair component [19]).

To tackle the sync bottleneck problem, we propose
a lightweight and practical sync protocol, called LightSync.
At the heart of LightSync lie three novel building blocks:

� HoH aggregates all the h hash values of each data par-
tition (in one syncmessage) into a single but represen-
tative hash value by using the Merkle tree structure.
Thus, one syncmessage contains only one hash value.

� CHC is responsible for reducing the number of sync
messages exchanged in each sync round. Specifi-
cally, CHC organizes the r replicas of a partition

with a small ring structure. During a certain
partition’s object sync process, CHC only sends the
aggregated hash value to the clockwise neighbor in
the small ring.

� FNH properly detects and handles node failures with
moderate overhead, so as to effectively strengthen
the robustness of LightSync. Also, FNH helps a failed
node quickly rejoin the system with a consistent,
latest state.

With the above design, the per-node network overhead
for OpenStack Swift object sync is provably reduced from
Qðn� rÞ to QðnhÞ hash values. Besides, the performance
degradation incurred by node failures is substantially
mitigated. To evaluate the real-world performance, we
have implemented LightSync as an open-source patch to
OpenStack Swift, which is also applicable to Riak S2 and
Cassandra in principle. The patch can be downloaded from
https://github.com/lightsync-swift/lightsync. In both lab-
scale (including 5 physical servers) and large-scale (includ-
ing 64 Aliyun ECS virtual servers) deployments, we observe
that LightSync remarkably reduces the sync delay by up to
879� and the network overhead by up to 47.5�. We also
compare LightSync with existing object sync protocols
using other topologies (e.g., Primary/Backup using Star
[20], [21] and Chain Replication using Chain [22], [23]), and
find that the sync delay of LightSync is obviously shorter
by 2–8 times.

This paper makes the following contributions:

� We (are the first to) discover the sync bottleneck
problem of OpenStack Swift-like systems through
comprehensive experiments (Section 3). In particular,
this problem is considerably aggravated in the
presence of data updates (Section 3.5) and node
failures (Section 3.6), and cannot be fundamentally
solved by increasing the number of sync threads
(Section 3.7).

� We reveal the key factors that lead to the problem by
investigating the source code of OpenStack Swift
(Section 4).

� We propose an efficient and practical object sync
protocol, named LightSync, to address the problem
(Section 5).

� We implement an open-source LightSync patch
which is suited to general OpenStack Swift-like
systems (Section 5.5).

� After the patch is applied to realistic deployments,
both lab-scale and large-scale testbed results illustrate
that LightSync is capable of significantly improving
the object sync performance. (Section 6) Also, Light-
Sync essentially outperforms its counterparts in terms
of sync delay. (Section 6.4).

2 BACKGROUND

OpenStack Swift is a well-known open-source object storage
system. It is typically used to store diverse unstructured data
objects, such as virtual machine (VM) snapshots, pictures,
audio/video volumes, and various backups. Many existing
cloud storage systems are designed and implemented by
(partially) following the paradigm of OpenStack Swift.

1. On the other hand, although both the CPU and memory usages
increase as r and n increase, they generally stay at an affordable level.
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2.1 Design Goals of OpenStack Swift

OpenStack Swift offers each data object eventual consistency,
a well-studied consistency model in the area of distributed
systems. Compared with the strong consistency model, the
eventual consistency model can achieve better data avail-
ability but may lead to a situation where some clients read
an old copy of the data object [24]. Besides, OpenStack Swift
provides reliability (and durability) by replicating each
object across multiple (3 by default) storage nodes.

2.2 OpenStack Swift Architecture

As demonstrated in Fig. 1, there are two types of nodes in an
OpenStack Swift cluster: storage nodes and proxy nodes. Stor-
age nodes are responsible for storing objects while proxy
nodes—as a bridge between clients and storage nodes—
communicate with clients and allocate requested objects on
storage nodes. On receiving a client’s read request on an
object o, the proxy node first searches for the storage nodes
hosting the replicas of o and then sends requests to all the
replica nodes of the object o. We use r to denote the number
of replicas for each object throughout the paper. By default,
OpenStack Swift utilizes a quorum-based voting mechanism
for replica control [25]. Once a valid number of (� br=2c þ 1)
responses are received, the proxy node selects the best
response (i.e., the one with the latest version of o) and then
redirects the response to the client. On the other side, for a
given write request on o, the proxy node sends the request
to all the r storage nodes hosting o. As long as a certain num-
ber (� br=2c þ 1) of them reply with “successful write,” the
update is taken as successful.

2.3 Partition and Synchronization

Like many popular storage systems, OpenStack Swift
organizes data partitions through consistent hashing
(or says DHT, distributed hash table) [26], [27]. Specifically,
OpenStack Swift constructs a logical ring (called the object
ring or partition ring) to represent the entire storage space.
This logical ring is composed of many equivalent subspaces.
Each subspace represents a partition and includes a number
of (h)2 objects belonging to the partition. According to
the working principle of consistent hashing, h dynamically
changes with the system scale.

Each partition is replicated r times on the logical ring,
physically mapped to r different storage nodes. If all the N
storage nodes in the logical ring are homogeneous, the num-
ber of partitions hosted by each node is r�p

N , where p denotes
the total number of unique partitions.

Each object is assigned a unique identifier, i.e., an MD5
hash value of the object’s path. Further, objects in the same
partition are split into multiple subdirectories (suffix directo-
ries) according to the suffixes of their hash values. For
Example in Fig. 2, one suffix in the directory 25 is 882, so
the last three characters of all the hash values located in this
suffix directory are exactly 882.

For a given partition, its fingerprint is denoted by the
hashes.pkl file. Each line of the hashes.pkl file contains at least
35 hex characters: 3 for the hash suffix and 32 for the MD5
hash value. The corresponding sync message of a partition
mainly contains its hashes.pkl file.

3 CASE STUDY

To deep understand how well OpenStack Swift-like systems
achieve consistency, this section presents a lab-scale case
study on the object sync performance of OpenStack Swift. We
first conduct experiments to understand OpenStack Swift’s
sync delay (Section 3.2), network overhead (Section 3.3),
and CPU&memory usages (Section 3.4) in a stable state. Here
a stable state means very few to no data updates (e.g., object
creations or deletions) occur to the OpenStack Swift system.
Then, on the contrary, we examine the sync delay and net-
work overhead of OpenStack Swift in the presence of bursty
data updates (Section 3.5) and node failures (Section 3.6).
We finally summarize our OpenStack Swift case study in
Section 3.8.

3.1 Experimental Setup

Wemake a lab-scale OpenStack Swift deployment for the case
study. The deployment involves five Dell PowerEdge T620
servers, each equipped with 2 � 8-core Intel Xeon CPUs@2.0
GHz, 32 - GB 1600 - MHz DDR3 memory, 8 � 600-GB 15
K-RPMSAS disk storage, and two 1-Gbps BroadcomEthernet
interfaces. The operating system of each server is Ubuntu
14.04 LTS 64-bit. All these servers, aswell as the client devices,
are connected by a commodity TP-LINK switch with 1-Gbps
wired transmission rate.

One of these servers (Node-0) is used to run the Open-
stack Keystone service for account/data authentication,
and meanwhile plays the roles as both a proxy node and a
storage node in the OpenStack Swift system. The other
servers (Node-1, Node-2, Node-3, and Node-4) are only used

Fig. 1. OpenStack Swift architecture.

Fig. 2. An example for a data partition’s structure.

2. Mostly each suffix directory contains only one object, i.e., we may
assume h � the number of objects in a partition.
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as storage nodes. In this lab-scale OpenStack Swift system,
the max number of partitions is fixed to 218 ¼ 262144 (as rec-
ommended in the official OpenStack installation guide [14]),
and the number of replicas for each data object is configured
as r ¼ 2; 3; 4; 5, respectively.

In addition, we employ multiple common laptops as the
client devices. They are responsible for sending both object
read and write requests through ssbench (SwiftStack
Benchmark Suite [28]), a benchmarking tool for automati-
cally generating intensive OpenStack Swift workloads.
Each data object is filled with random bytes between 6 KB
and 10 KB (we will prove in Section 4 that the object sync
performance of OpenStack Swift is generally irrelevant to
the concrete content and size of each data object).

3.2 Sync Delay in a Stable State

First of all, we want to understand the impact of the two key
parameters, i.e., r and n, on the running time of a sync
round (called the sync delay). To this end, we conduct mul-
tiple experiments with increasing n ¼ 1K; 10K; 100K; 1M;
2M; 3M; 4M and r ¼ 2; 3; 4; 5, respectively, and measure the
sync delay when the system enters a stable state. In an
OpenStack Swift system, the sync delay is recorded in its
log file, i.e., /var/log/syslog.

As shown in Fig. 3, when n � 1K, the sync delay is
merely a few seconds. However, when n reaches several
million, it sharply increases to tens of minutes. Meanwhile,
the sync delay increases with a larger r. The above phenom-
ena are not acceptable in practical data-intensive scenarios,
since they may well influence the desired availability and
consistency of OpenStack Swift. An interesting finding is
when n > 1M, the sync delay increases quite slowly (for a
fixed r). This can be explained by the number of partitions
(p) illustrated in Fig. 7. As mentioned in Section 3.1, the
max number of partitions is fixed to 218 ¼ 262144. When
n grows, p is automatically increased by OpenStack Swift.
But when n > 1M � 262144, p stays close to (but no
more than) 262144. Hence, the number of sync messages

exchanged per node (heavily depending on the value of p)
keeps stable while the size of each sync message is enlarged,
which will be thoroughly explained in Section 4.

3.3 Network Overhead in a Stable State

Next, we aim at understanding the network overhead in a
sync round, which might be an essential factor that deter-
mines the sync delay. For this purpose, we measure the size
of network messages exchanged within the OpenStack Swift
system during the object sync process in a stable state.
The measurement results in Fig. 4 show that the network
overhead increases with larger n and/or r. More importantly,
the four curves in Fig. 4 are basically consistent with those in
Fig. 3 in terms of variation trend. For example, when n ¼ 4M
and r ¼ 5, the sync delay reaches the maximum 58 minutes,
and meanwhile the network overhead reaches the maximum
3.63 GB. When n > 1M � 262144 (for a fixed r), although
the number of sync messages keeps stable, the size of each
sync message still grows with n since each sync message con-
tains more hash values (of more data objects). This is why the
network overhead continues growingwith n when n > 1M.

3.4 CPU and Memory Usages in a Stable State

In addition to sync delay and network overhead, we wish to
know the computation overhead of the object sync process.
We, therefore, measure the CPU and memory usages of
OpenStack Swift in a sync round. The CPU usage per storage
server is plotted in Fig. 5 and the memory usage per storage
server is plotted in Fig. 6. As shown in these two figures, we
have the following two findings. First, both the CPU and
memory usages increase as the number of objects (n) and/or
the number of replicas for each object (r) increase. Second,
even for the largest deployment (where n ¼ 4M and r ¼ 5),
the CPU usage is close to 30 percent and the memory usage
is close to 160 MB. Since each storage server has 32 GB
of memory, the highest memory usage rate is merely
0.5 percent (¼ 160 MB

32 GB ). Thus, both the CPU and memory
usages are affordable for the OpenStack Swift system.

Fig. 3. Sync delay in a stable state.

Fig. 4. Network overhead in a stable state.

Fig. 5. CPU usage in a stable state.

Fig. 6. Memory usage in a stable state.
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compares the received hash value with the root-layer hash
value of its local Merkle tree. If the two values match, the
checking process terminates; otherwise, A should send the
lower-layer hash values in its Merkle tree to B for further
checking. However, finding inconsistent data objects in the
above-mentioned way needs multiple rounds of data trans-
mission. The cost of long round-trip time (RTT) outweighs
the benefits of reduced network traffic. Therefore, LightSync
discards the intermediate hash values but stores only the
root-layer hash values and the leaves of the Merkle tree.
Once the root-layer hash values do not match each other,
LightSync will directly compare the hash values in the
leaves of the Merkle tree.

Generation of the Aggregated Hash Value. We now describe
how HoH generates the aggregated hash value that repre-
sents a given partition P . First, HoH extracts the hashes.pkl
file of P (i.e., the fingerprint of P ). Then, HoH computes the
MD5 hash values of all the suffix hashes in P one by one (as
demonstrated in Fig. 20). This process constructs the Merkle
tree structure. Finally, HoH stores the aggregated MD5
hash value, i.e., the root-layer hash value of the Merkle tree,
in a file named changed.pkl (also stored in the partition’s
directory). So far, when a storage node wants to send a sync
message (for a partition P ) to another storage node, it only
needs to “envelop” a single hash value, i.e., the aggregated
hash value in changed.pkl, into each sync message.

Consistency Checking. If an aggregated hash value of a
data partition is found inconsistent between two storage
nodes, the local node should first determine which suffix
directory is inconsistent and then which version of that cor-
responding suffix directory is more up-to-date.

First, the inconsistent suffix directory is sought out by
comparing the s leaf-layer hash values received with the
local ones within OðsÞ steps, where s is the number of suffix
directories in the corresponding data partition. Once the
inconsistent suffix directory is found, the local node actively
pushes the corresponding data chunks to the remote node,
which will later determine which version is newer by check-
ing timestamps recorded as file names of data chunks.
Finally, the stale data chunks will be deleted.

Compared with the original design of OpenStack Swift,
HoH uses a single but representative hash value to replace
a large collection of hash values, thus effectively reducing
the size of each sync message by nearly h times.

5.3 Circular Hash Checking (CHC)

CHC is responsible for enabling different replicas of the
same partition to achieve consistency more efficiently. Spe-
cifically, during a circular hash checking process, the stor-
age nodes hosting the r replicas of a given partition P form
a small logical ring, called the replica ring of P . This small
replica ring is easy to form as it already exists inside the
large object ring (refer to Section 2.3).

Suppose P has 5 replicas, and ri denotes the storage
node hosting the ith replica for P . When a storage node
wants to check the consistency of P with the other replica
nodes, it only sends a sync message (generated by HoH)
to the successor node clockwise on the replica ring of
P—this successor replica node is referred to as its clockwise
neighbor. For example in Fig. 21, when r3 wants to check
the consistency of P , it only sends a sync message to r4
rather than r1, r2, r4 and r5 (as in Fig. 18). After each rep-
lica node finishes sending a sync message to its clockwise
neighbor, we say a CHC process (or a CHC sync round) is
completed. Formally, Algorithm 1 describes how CHC
works.

Algorithm 1. Circular Hash Checking

Input: A set RP containing all the replica nodes’ IDs for a
given data partition P ;

while RP 6¼ ; do
Randomly pick out a replica node’s ID from RP ;
rP  the picked replica node’s ID;
Remove rP from RP ;
The replica node (with ID =) rP sends a sync message to
rP ’s clockwise neighbor;
if rP ’s version of P is different from the version held by its
clockwise neighbor then

rP pushes its hosted data of P at local version to its
clockwise neighbor;

Fig. 18. An example for a complete object sync process. The five sub-processes run in parallel rather than in sequence.

Fig. 19. An example for the Merkle tree. Fig. 20. Hashing of hashes for a data partition.
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