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Abstract—Nowadays, more andmore enterprises and organizations are hosting their data into the cloud, in order to reduce the IT

maintenance cost and enhance the data reliability. However, facing the numerous cloud vendors as well as their heterogenous pricing

policies, customersmaywell be perplexed with which cloud(s) are suitable for storing their data and what hosting strategy is cheaper.The

general status quo is that customers usually put their data into a single cloud (which is subject to the vendor lock-in risk) and then simply

trust to luck. Based on comprehensive analysis of various state-of-the-art cloud vendors, this paper proposes a novel data hosting

scheme (named CHARM) which integrates two key functions desired. The first is selecting several suitable clouds and an appropriate

redundancy strategy to store data with minimizedmonetary cost and guaranteed availability. The second is triggering a transition

process to re-distribute data according to the variations of data access pattern and pricing of clouds. We evaluate the performance of

CHARMusing both trace-driven simulations and prototype experiments. The results show that compared with the major existing

schemes, CHARMnot only saves around 20 percent of monetary cost but also exhibits sound adaptability to data and price adjustments.

Index Terms—Multi-cloud, data hosting, cloud storage
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1 INTRODUCTION

RECENT years have witnessed a “gold rush” of online data
hosting services (or says cloud storage services) such as

Amazon S3, Windows Azure, Google Cloud Storage, Aliyun
OSS [1], and so forth. These services provide customers with
reliable, scalable, and low-cost data hosting functionality.
More and more enterprises and organizations are hosting
all or part of their data into the cloud, in order to reduce the
IT maintenance cost (including the hardware, software, and
operational cost) and enhance the data reliability [2], [3], [4].
For example, the United States Library of Congress had
moved its digitized content to the cloud, followed by the
New York Public Library and Biodiversity Heritage Library
[5]. Now they only have to pay for exactly how much they
have used.

Heterogenous clouds. Existing clouds exhibit great hetero-
geneities in terms of both working performances and pric-
ing policies. Different cloud vendors build their respective
infrastructures and keep upgrading them with newly
emerging gears. They also design different system archi-
tectures and apply various techniques to make their serv-
ices competitive. Such system diversity leads to observable
performance variations across cloud vendors [6].

Moreover, pricing policies of existing storage services
provided by different cloud vendors are distinct in both

pricing levels and charging items. For instance, Rackspace
does not charge for Web operations (typically via a series of
REST ful APIs), Google Cloud Storage charges more for
bandwidth consumption, while Amazon S3 charges more
for storage space (refer to Section 2.1).

Vendor lock-in risk. Facing numerous cloud vendors as
well as their heterogenous performances/policies, custom-
ers may be perplexed with which cloud(s) are suitable for
storing their data and what hosting strategy is cheaper.The
general status quo is that customers usually put their data
into a single cloud and then simply trust to luck. This is sub-
ject to the so-called “vendor lock-in risk”, because customers
would be confronted with a dilemma if they want to switch
to other cloud venders.

The vendor lock-in risk first lies in that data migration
inevitably generates considerable expense. For example,
moving 100 TB of data from Amazon S3 (California datacen-
ter) to Aliyun OSS (Beijing datacenter) would consume as
much as 12,300 (US) dollars.

Besides, the vendor lock-in risk makes customers suffer
from price adjustments of cloud vendors which are not
uncommon. For example, the fluctuation of electricity bills
in a region will affect the prices of cloud services in this
region. We notice that giant cloud vendors like Windows
Azure and Google Cloud Storage have been adjusting their
pricing terms [7], [8].

Unexpected bankruptcy of cloud vendors further aggra-
vates the situation. Nirvanix, which has thousands of cus-
tomers including top 500 companies, suddenly shut down
its cloud storage service in Sep. 2013 [9]. Ubuntu One, also a
famous player in the market of cloud storage service,
escaped in Apr. 2014 [10]. So clearly, it is unwise for an
enterprise or an organization to host all data in a single
cloud—“your best bet is probably not to put all your eggs in one
basket.” [11]
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Finally, uncontrolled data availability is (in a sense)
another type of vendor lock-in risk. Though the service
quality is formally guaranteed by service level agreements
(SLA), failures and outages do occur. Almost all the major
cloud vendors experienced service outages in recent years
[12], [13], [14]. Some outages even lasted for several hours.

Multi-cloud data hosting. Recently, multi-cloud data hosting
has received wide attention from researchers, customers,
and startups. The basic principle of multi-cloud (data host-
ing) is to distribute data across multiple clouds to gain
enhanced redundancy and prevent the vendor lock-in risk,
as shown in Fig. 1. The “proxy” component plays a key role
by redirecting requests from client applications and coordi-
nating data distribution among multiple clouds.

The potential prevalence of multi-cloud is illustrated in
three folds. First, there have been a few researches con-
ducted on multi-cloud. DepSky guarantees data availability
and security based on multiple clouds, thus allowing critical
data (e.g., medical and financial data) to be trustingly stored
[15]. RACS deploys erasure coding among different clouds
in order to prevent vender lock-in risk and reduce monetary
cost [16]. Second, new types of cloud vendors (e.g., Dura-
Cloud [17] and Cloud Foundry [18]) have emerged and rap-
idly grown up to provide real services based on multiple
clouds. Third, new development tools like Apache libcloud
[19] provide a unified interface above different clouds,
which facilitates migrating services among clouds.

Nevertheless, as for multi-cloud people still encounter
the two critical problems: (1) How to choose appropriate
clouds to minimize monetary cost in the presence of heteroge-
nous pricing policies? (2) How to meet the different availability
requirements of different services? As to monetary cost, it
mainly depends on the data-level usage, particularly stor-
age capacity consumption and network bandwidth con-
sumption. As to availability requirement, the major
concern lies in which redundancy mechanism (i.e., replica-
tion or erasure coding) is more economical based on spe-
cific data access patterns. In other words, here the
fundamental challenge is: How to combine the two mecha-
nisms elegantly so as to greatly reduce monetary cost and mean-
while guarantee required availability?

The proposed CHARM scheme. In this paper, we propose a
novel cost-efficient data hosting scheme with high availabil-
ity in heterogenous multi-cloud, named “CHARM”. It intel-
ligently puts data into multiple clouds with minimized
monetary cost and guaranteed availability.

Specifically, we combine the two widely used redun-
dancy mechanisms, i.e., replication and erasure coding, into
a uniform model to meet the required availability in the

presence of different data access patterns. Next, we design
an efficient heuristic-based algorithm to choose proper data
storage modes (involving both clouds and redundancy
mechanisms). Moreover, we implement the necessary pro-
cedure for storage mode transition (for efficiently re-distrib-
uting data) by monitoring the variations of data access
patterns and pricing policies.

We evaluate the performance of CHARM using both
trace-driven simulations and prototype experiments. The
traces are collected from two online storage systems:
AmazingStore [20] and Corsair [21], both of which pos-
sess hundreds of thousands of users. In the prototype
experiments, we replay samples from the two traces for a
whole month on top of four mainstream commercial
clouds: Amazon S3, Windows Azure, Google Cloud Stor-
age, and Aliyun OSS. Evaluation results show that com-
pared with the major existing schemes (i.e., RepRa [22],
RepGr [23], EraRa [16], and EraGr [24] which will be elab-
orated in Section 7.2), CHARM not only saves around 20
percent (more in detail, 7-44 percent) of monetary cost
but also exhibits sound adaptability to data and price
adjustments.

Summary of contribution. At last, our contributions in this
paper can be briefly summarized as follows:

1) We propose and implement CHARM, a novel, effi-
cient, and heuristic-based data hosting scheme for
heterogenous multi-cloud environments. CHARM
accommodates different pricing strategies, availabil-
ity requirements, and data access patterns. It selects
suitable clouds and an appropriate redundancy
strategy to store data with minimized monetary cost
and guaranteed availability.

2) We design and implement a flexible transition scheme
for CHARM. It keeps monitoring the variations of
pricing policies and data access patterns, and adap-
tively triggers the transition process between different
data storagemodes. It also starts a datamigration pro-
cess among different clouds if necessary.

3) We evaluate the performance of CHARM using two
typical real-world traces and prototype experiments.
Both trace-driven simulation and experiment results
confirm the efficacy of CHARM.

Roadmap. The remainder of this paper is organized as fol-
lows. First, we briefly introduce the pricing models of main-
stream cloud vendors and the basic knowledge of erasure
coding in Section 2. Then, we demonstrate the new opportu-
nity of multi-cloud by combining replication and erasure
coding in Section 3. In Sections 4 and 5, we present the
architecture and two key components of CHARM. Section 6
discusses the practical issues of CHARM. After that, we
evaluate the performance of CHARM in Section 7 and
review related work in Section 8. Finally, we conclude the
paper in Section 9.

2 BACKGROUND

2.1 Pricing Models of Mainstream Clouds

In order to understand the pricing models of mainstream
cloud vendors, we select to study five most popular cloud
storage services across the world: Amazon S3, Windows

Fig. 1. Basic principle of multi-cloud data hosting.
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Azure, Google Cloud Storage, Rackspace, and Aliyun OSS
(deployed in China). Their latest pricing models (in 2014)
are presented in Table 1 (Storage and bandwidth pricing)
and Table 2 (Operation pricing).

Basically for these clouds, customers are charged in
terms of storage, out-going (i.e., from cloud to client)
bandwidth1, and operations (such as PUT, GET, and
LIST). However, each vendor’s pricing model has some
difference from the others. For instance, in Asia Amazon
S3 has lower bandwidth price and higher storage price
than Google Cloud Storage. Aliyun OSS provides the low-
est bandwidth price, but its storage price is still higher
than Google Cloud Storage. Besides, prices of operations
are also different across different clouds, as shown
in Table 2.

2.2 Erasure Coding

Erasure coding has been widely applied in storage systems
in order to provide high availability and reliability while
introducing low storage overhead [25]. As we all know, the
storage mode of “three replicas” is putting replicas into
three different storage nodes. Then the data is lost only
when the three nodes all crash. However, it occupies 2x
more storage space. Erasure coding is proposed to reduce
storage consumption greatly while guaranteeing the same
or higher level of data reliability.

A representative erasure-coding scheme is the so-called
“Reed-Solomon code”, which is a type of Maximum Distance
Separable erasure coding. Considering a storage system with
M nodes, we divide data into blocks of equal size, and each
block is further divided into m equal-sized data chunks.
After that, we encode the m chunks into n�m parity
chunks and put the total n chunks into different nodes
(n �M). We use RS(m, n) to denote this coding scheme and
we call the n chunks a “segment”.

More in detail, each parity chunk is generated by a linear
combination of the m data chunks. Let fgi;jg1�i�n�m;1�j�m
be the coefficients of the linear combinations and let
fDig1�i�m and fPig1�i�n�m denote the data chunks and par-

ity chunks, respectively. Then, Pi ¼
Pm

j¼1 gi;jDj, where all

the arithmetic operations are performed in the Galois Field.
Through the abovementioned efforts, the Reed-Solomon

coding scheme can tolerate up to n�m simultaneous chunk
failures. In other words, we can restore data using any m
chunks in the segment. If m ¼ 1, RS(1, n� 1) is just the tra-
ditional replication scheme, where gi;j ¼ 1; 8i; j, and we

have n replicas for each data block.
In order to encode data, we have to implement multiplica-

tion operations in the Galois Field, which brings much

computational complexity to the storage system, making
computation a bottleneck. However, the situation can be
significantly improved by using Intel SIMD instructions
[26], perpetuating a trend of worrying more about I/O than
CPU performance (see Section 6 for more details).

3 A NEW OPPORTUNITY IN MULTI-CLOUD

STORAGE

In this section, from a quantitative perspective, we demon-
strate that there is still plenty of space for optimizing the
multi-cloud data hosting by combining the two widely used
redundancymechanisms, i.e., replication and erasure coding.

3.1 Combining Replication and Erasure Coding

In existing industrial data hosting systems, data availability
(and reliability) are usually guaranteed by replication or
erasure coding. In the multi-cloud scenario, we also use
them to meet different availability requirements, but the
implementation is different. For replication, replicas are
put into several clouds, and a read access is only served
(unless this cloud is unavailable then) by the “cheapest”
cloud that charges minimal for out-going bandwidth and
GET operation.

For erasure coding, data is encoded into n blocks includ-
ing m data blocks and n�m coding blocks, and these
blocks are put into n different clouds. In this case, though
data availability can be guaranteed with lower storage space
(compared with replication), a read access has to be served
by multiple clouds that store the corresponding data blocks.
Consequently, erasure coding cannot make full use of the
cheapest cloud as what replication does. Still worse, this
shortcoming will be amplified in the multi-cloud scenario
where bandwidth is generally (much) more expensive than
storage space.

3.2 Comparison of Data Hosting Modes

The traditional view of replication and erasure coding [27],
[28] does not hold in the multi-cloud scenario. For example,
the biggest preponderance of erasure coding lies in much
less storage space for guaranteed high availability.

TABLE 1
Prices of Storage (in $/GB/Month) and Out-Going Bandwidth (in $/GB)

Clouds Amazon S3 Windows Azure Google Cloud Storage Rackspace Aliyun OSS

Tokyo Singapore America US East US RA-GRS Asia America Asia Pacific All Regions China

Storage 0.033 0.03 0.03 0.0243 0.0616 0.024 0.026 0.026 0.105 0.028
Out-going Bandwidth 0.201 0.19 0.12 0.12 0.12 0.19 0.12 0.21 0.2 0.116

TABLE 2
Prices of Operations (in 10�5 Dollars/Operation)

Clouds PUT GET LIST DELETE

Rackspace free free free free
Amazon S3 1 0.1 1 free
Windows Azure 0.01 0.01 0.01 free
Google Cloud Storage 1 0.1 1 free
Aliyun OSS 0.016 0.016 0.016 free

1. In-going (i.e., from client to cloud) bandwidth is not charged.
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However, this preponderance shrinks because of the clouds’
pricing policies—bandwidth is (much) more expensive than
storage space. For the same reason, in the multi-cloud sce-
nario replication regains its competitiveness, though it is
traditionally regarded as inferior to erasure coding in terms
of storage saving. Therefore, it is difficult now to determine
which mechanism is better in the presence of complex
workload patterns and various pricing policies. Below we
compare the two mechanisms quantitatively to shed light
on this problem.

In a multi-cloud system, to tolerate simultaneous outages
of k clouds, replication needs to place kþ 1 copies of an
object into kþ 1 different clouds. In contrast, erasure coding
divides an object into m blocks, and encodes them into
mþ k blocks. Here we use k ¼ 1 for simplicity in the follow-
ing analysis. For the sake of clarity, Table 3 lists the varia-
bles used in this section.

For the replication mechanism, the storage cost is

S
P2

i¼1 Psai , where ai is the index of a cloud. The bandwidth

cost is crSPbb, where b is the index of the cloud with mini-
mal bandwidth price among the two clouds. Therefore, the
total cost CR can be expressed below:

CR ¼ S
X2
i¼1

Psai þ crSPbb:

For the erasure coding mechanism, the storage cost is
S
m

Pmþ1
i¼1 Psai , where ai also represents the index of a cloud.

The bandwidth cost is crS
m

Pm
i¼1 Pbbi , where bi denotes the

index of the cloud with the ith minimal outgoing band-
width cost among the mþ 1 clouds. Thus, the total cost CE

can be expressed below:

CE ¼ S

m

Xmþ1
i¼1

Psai þ
crS

m

Xm
i¼1

Pbbi :

We use the data centers in Asia (including five data cen-
ters) to quantitatively compare the two redundancy mecha-
nisms. The prices of storage and bandwidth are listed in
Table 1. For replication, we pick Aliyun OSS which has the
lowest bandwidth price and Windows Azure which has the
lowest storage price. For erasure coding, we use all the five
clouds. A more formal demonstration of cloud selection can
be seen in Section 4.

Specifically, we artificially generate 100; 000 files, each of
which is 10 MB in size. These files are stored for a month.
Fig. 2 presents the monetary cost of replication and erasure
coding with varying file read frequencies.

As shown in Fig. 2a, replication almost always outper-
forms erasure coding in the multi-cloud scenario. When the

read count is 30, replication can save 32 percent monetary
cost compared with erasure coding. The advantage of repli-
cation originates from the cloud with the lowest bandwidth
price. In general, when the read frequency is high, the big-
ger the gap between the lowest bandwidth price and the
average one is, the greater the superiority of replication is.

On the contrary, as shown in Fig. 2b when the average
read frequency falls below 0.32, erasure coding outper-
forms replication. This critical value seems small; however,
we have to face the fact that as to cloud storage services,
the majority of data only generates very small access work-
load, and data usually changes from “hot” to “cold”. These
facts degrade the effect of erasure coding to a similar level
as that of replication. On the other hand, significant mone-
tary saving can be achieved if we combine their advan-
tages elegantly. This is why we propose the novel data
hosting scheme CHARM which will be elaborated in the
following sections.

4 DATA HOSTING SCHEME

4.1 CHARM Overview

In this section, we elaborate a cost-efficient data hosting
model with high availability in heterogenous multi-cloud,
named “CHARM”. The architecture of CHARM is shown
in Fig. 3. The whole model is located in the proxy in
Fig. 1. There are four main components in CHARM: Data
Hosting, Storage Mode Switching (SMS), Workload Statistic,
and Predictor.

Workload Statistic keeps collecting and tackling access
logs to guide the placement of data. It also sends statistic
information to Predictor which guides the action of SMS.
Data Hosting stores data using replication or erasure coding,

TABLE 3
Symbol Table

Symbol Meaning

S Size of a file
cr Number of reads of a file in a time length of t
Psi Storage price of the ith cloud
Pbi Outgoing bandwidth price of the ith cloud
Poi GET operation price of the ith cloud

Fig. 2. Comparison between replication and erasure code when the read
frequency varies.

Fig. 3. The architecture of CHARM. “R” represents replication and “E”
represents erasure coding.
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according to the size and access frequency of the data. SMS
decides whether the storage mode of certain data should be
changed from replication to erasure coding or in reverse,
according to the output of Predictor. The implementation of
changing storage mode runs in the background, in order
not to impact online service.

Predictor is used to predict the future access frequency of
files. The time interval for prediction is one month, that is,
we use the former months to predict access frequency of
files in the next month. However, we do not put emphasis
on the design of predictor, because there have been lots of
good algorithms for prediction. Moreover, a very simple
predictor, which uses the weighted moving average
approach, works well in our data hosting model.

Data Hosting and SMS are two important modules in
CHARM. Data Hosting decides storage mode and the clouds
that the data should be stored in. This is a complex integer
programming problem demonstrated in the following sub-
sections. Then we illustrate how SMSworks in detail in Sec-
tion 5, that is, when and how many times should the
transition be implemented.

4.2 Formal Definition of Data Hosting Model

We first formally define the mathematical model applied in
Data Hosting. When talking about erasure coding, we usu-
ally mean m > 1 (not replication). However, replication is a
special case of erasure coding (i.e., m ¼ 1). So we combine
the two storage mechanisms and define a unified model.

Assuming we have N clouds that meet performance
requirements. We choose n cloud to store a file, the file
should be encoded into n blocks of equal size (n � N),
including m data blocks and n�m coding blocks. If m ¼ 1,
the n�m coding blocks are the same with the data block,
i.e., replication. Then the n blocks are distributed into the n
clouds. We call a ðm;nÞ pair with its corresponding clouds a
storage mode.

We first formally define the availability of a ðm;nÞ pair.
For the n clouds, which one stores data block, and which
one stores coding block do not impact the availability. It is
only impacted by the value ofm.

We define N 0 ¼ fi 2 ½1; N �jui ¼ 1g, where ui 2 f0; 1g,
jN 0j ¼ n. ui is used to mark whether the ith cloud is chosen.
N 0 is the set of the selected n clouds from the N available
clouds for storing the file. It can tolerate simultaneous fail-

ures of any n�m clouds. There are jN 0 j
k

� �
cases of k simulta-

neously available clouds. We use C
jN 0 j;k
j to denote the jth

element in the set of the jN 0 j
k

� �
cases. The total probability

that there are k simultaneously available clouds can be
expressed below:

PrðN 0; kÞ ¼
XjN 0 jk� �
j¼1

Y
i2CjN 0 j;k

j

ai
Y

i2N 0nCjN 0 j;k
j

ð1� aiÞ

2
64

3
75; (1)

where ai means the availability of the ith cloud.
Since the storage mode ðm;nÞ can tolerate any

0 � ðn�mÞ simultaneously failed clouds, its availability
can be expressed as the sum of PrðN 0; kÞ:

XjN 0 j
k¼m

PrðN 0; kÞ ¼
XjN 0 j
k¼m

XjN 0 jk� �
j¼1

Y
i2CjN 0 j;k

j

ai
Y

i2N 0nCjN 0 j;k
j

ð1� aiÞ

2
64

3
75: (2)

On the other hand, the monetary cost Csm of a storage
mode is composed of storage cost, bandwidth cost, and
operation cost. The n clouds’ storage costs compose the total
storage cost, each cloud stores the data of size S=m. So the
storage cost can be expressed below:

XN
i¼1

S

m
Psiui ¼

X
i2N 0

S

m
Psi: (3)

Since read access can be satisfied by only m clouds, we
use the cheapest m clouds for read access. The m clouds are
right used for storing data blocks while the left n�m
clouds for coding blocks. The normal read access does not
need data decoding. Thus, the bandwidth and operation
cost can be defined as

min
j2½1; jN 0 jm

� �
�

X
i2CjN 0 j;m

j

S

m
crPbi þ

X
i2CjN 0 j;m

j

crPoi

8><
>:

9>=
>;: (4)

Actually, the expression of the operation cost above is not
fair. For a large file (e.g., larger than 100 MB), we can split it
into pieces, encode them, and put them into the clouds.
When we request this file, we need to issuem GET requests.
However, for a small file, such as several KB, we never split
it into pieces again. Instead, we group many such files into
a large block, then split and encode this block. In this case,
getting a small file only uses one GET request. So we use
1
m

P
i2CjN 0 j;m

j

crPoi as operation cost. Since operation cost has

little impact for large files, this change does not affect the
cost of requesting large files.

Therefore, if we use A to denote the required availability,
the optimization problem can be formally defined as fol-
lows:

minCsm ¼
X
i2N 0

S

m
Psi þmin

j2½1; jN 0 jm

� �
�

X
i2CjN 0 j;m

j

S

m
crPbi

8><
>:

þ 1

m

X
i2CjN 0 j;m

j

crPoi

9>=
>;

(5)

s:t:
XjN 0 j
k¼m

XjN 0 jk� �
j¼1

Y
i2CjN 0 j;k

j

ai
Y

i2N 0nCjN 0 j;k
j

ð1� aiÞ

2
64

3
75 � A (6)

N 0 ¼ fi 2 ½1; N �jui ¼ 1g (7)

ui 2 f0; 1g; 8i 2 ½1; N � and i 2 Z� (8)

jN 0j � m � 1;m 2 Z�: (9)

This minimization problem is a complex integer pro-
gramming problem. We first note that even the calculation
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of Eq. (6) has the complexity of Oð2jN 0 jÞ. More specifically,
we have the following negative result:

Theorem 1. The minimization problem described by Eqs. (5)-(9)
is NP-hard.

Proof. There are two steps. We first prove that the 0-1 inte-
ger linear programming is NP-complete by reducing it to
the clique problem [29], then we prove our problem is
much harder than 0-1 integer linear programming, is a
NP-hard problem.

There is an undirected graph G ¼< V;E > and non-
negative integer J , where J � jV j and V ¼ fv1; v2; :::; vng.
Finding a clique V 0 (V 0 2 V ) of G and jV 0j � J can be
reduced into the 0-1 integer programming as follows: Let
xi ¼ 1 for each vi 2 V 0. When ðvi; vjÞ 2 E, xi þ xj � 1.Pn

i¼1 xi ¼ jV 0j. So jV 0j � J becomes a decision problem

whether max
Pn

i¼1 xi � J . The problem can be formally
described as follows:

max
Xn
i¼1

xi

s:t: xi þ xj � 1; 8i; j 2 f1; 2; . . . ; ng; i 6¼ j and ðvi; vjÞ 2 E

xi 2 f0; 1g; 8i 2 1; 2; . . . ; n:

The reducing can be completed in polynomial execu-
tion time. If the 0-1 integer linear problem can be solve in
polynomial time, the clique problem also has polynomial
solution. So 0-1 integer linear programming is also NP-
complete.

Our minimization problem is integer programming
which is harder than 0-1 integer linear programming.
Moreover, Eq (6) is a non-linear inequality which
includes the case of linear inequality. Since the problem
is harder than NP-complete, the minimization problem is
NP-hard. tu
In order to get the optimal solution, we have to traverse

each combination of ui, called a case. For each case we have
to traverse m among feasible values. Then we check
whether the case meets the availability requirement, and at
last pick the case with the minimal cost. So, according to the
calculation flow of this brute force approach, the complexity
can be expressed below:

2N
XjN 0 j
m¼1

jN 0j
XjN 0j
k¼m

jN 0j
k

� �
þ jN 0j

m

� � !
: (10)

The equation can be simplified as Oð2N2jN 0 jjN 0j2Þ. Obvi-
ously, this direct optimal approach will require inordinate
amount of computation. In order to make the decision mak-
ing practical and efficient, we demonstrate an effective heu-
ristic solution below.

4.3 Heuristic Solution

The key idea of this heuristic algorithm can be described as
follows:

We first assign each cloud a value di which is calculated
based on four factors (i.e., availability, storage, bandwidth,
and operation prices) to indicate the preference of a cloud.
We choose the most preferred n clouds, and then heuristi-
cally exchange the cloud in the preferred set with the cloud

in the complementary set to search better solution. This is
similar to the idea of Kernighan-Lin heuristic algorithm
[30], which is applied to effectively partition graphs to mini-
mize the sum of the costs on all edges cut.

The preference of a cloud is impacted by the four factors,
and they have different weights. The availability is the
higher the better, and the price is the lower the better. So we
use di ¼ aai þ b

Pi
as the preference of the ith cloud, where Pi

is the synthetical price of storage, bandwidth, and opera-
tion. Intuitively, if a file has much read access, the cloud
with lower bandwidth price is more preferred. If a file is
very small, operation price occupies a big proportion. So we
let Pi ¼ SPsi þ crSPbi þ crPoi. Specifically, ai and Pi are both
normalized into ð0; 1Þ.

Algorithm 1.Heuristic Algorithm of Data Placement

Input: file size S, read frequency cr, n’s upper limit �
Output:minimal cost Csm, the set c of the selected clouds

1 Csm  inf; c fg
2 Ls  sort clouds by normalized aai þ b

Pi
from high to slow

3 for n = 2 to � do
4 Gs  the first n clouds of Ls

5 Gc  Ls �Gs

6 form = 1 to n do
7 Acur  calculate the availability of Gs

8 if Acur � A then
9 Ccur  calculate the minimal cost
10 if Ccur < Csm then
11 Csm  Ccur

12 c Gs

13 end
14 else
15 /*heuristically search better solution*/
16 Gs  sort Gs by ai from low to high
17 Gc  sort Gc by Pi from low to high
18 for i = 1 to n do
19 flag 0
20 for j = 1 to N � n do
21 if aGc½j� > aGs½i� then
22 swap Gs½i� and Gc½j�
23 flag 1
24 break
25 end
26 end
27 if flag = 0 then
28 break
29 end
30 Acur  calculate the availability of Gs

31 if Acur � A then
32 Ccur  calculate the minimal cost
33 if Ccur < Csm then
34 Csm  Ccur

35 c Gs

36 end
37 break
38 end
39 end
40 end
41 end
42 end
43 return Csm, c
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To find out optimal n and m, we first traverse n from 2 to
�, where � is the upper limit of n and � < N . We do not set �
to N for two reasons: reality and complexity. For reality, n
tends to be small in practice, usually less than 10. It has
much higher probability for large n to induce degraded per-
formance. More specifically, if a cloud becomes unavailable,
the proxy has to get corresponding data from other m
clouds (m is usually close to n), which determines that n
cannot be very large in order to achieve good performance.
For complexity, calculating the availability of erasure cod-
ing ðm;nÞ has very high complexity. We have to check the
availability for every possible solution that is traversed. If
we give an upper limit to n, the availability can be calcu-
lated in polynomial running time.

Then we traverse m from 1 to n for each n. The availabil-
ity is calculated using Eq. 2. If the availability meets the
required value and the monetary cost is lower, we update
Csm and c (i.e., the set of the selected clouds). If the avail-
ability does not meet the required value, we exchange the
cloud in the current set Gs with the one in the complemen-
tary set Gc, using a greedy method: Firstly, Gs is sorted by
ai, and Gc is sorted by Pi. Then we try to exchange the cloud
in Gs from the lowest ai, one by one, with the cloud which
has the lowest Pi in Gc but higher availability than that
cloud in Gs, until the availability meets the required value.
If the cost of the obtained Gs is lower, we update Csm and c.
The detailed process is shown in Algorithm 1.

4.4 Complexity

We analyze the complexity of this heuristic algorithm. The
first two nested loops (line 3 and 6) are traversing n and m,

which have the complexity of Oð�2Þ. The next two nested
loops (line 18 and 20) are used to heuristically search for bet-
ter solutions, the complexity is Oð�ðN � �ÞÞ. Since the
searching process stops once it finds a solution meeting the
required availability, the complexity should be much lower
than Oð�ðN � �ÞÞ. The availability should be calculated in
line 7 and 30 to check whether it meets the requirement. As
Eq. (6) shows, the calculation has to iterate all the subsets,
the sizes of which are equal to or larger than m, so the com-
plexity is Oð2nÞ, where n � �.

For the calculation of the minimal cost (lines 9 and 32), we
need to find out the cheapest subset of size m to serve read
access, so sorting has to be implemented with the complexity
of Oð�log�Þ. Then the sort operations in line 2, 16, and 17 are
OðNlogNÞ, Oð�log�Þ, and OððN � �ÞlogðN� �ÞÞ respectively.
Based on the analysis above, the worst case running time can

be expressed as OðN logNþ �2ð2� þ �log� þ �log� þ ðN� �Þ
logðN� �Þ þ �ððN� �Þ þ 2� þ �log�ÞÞÞ. Since � is a constant
the computational complexity is actuallyOðN logNÞ.

We then compare the complexity between CHARM and
the brute force approach. Since n (i.e., jN 0j) is bounded by
an upper limit to make CHARM more efficient and practi-
cal, we also put this limit to the brute force approach. How-
ever, the upper limit would not give it the opportunity to be
implemented in acceptable time. Since the upper limit is �,

Oð2N2jN 0 jjN 0j2Þ of the brute force approach can be expressed

as OðP�
i¼1

N
i

� �
2��2Þ, which can be simplified as OðN�Þ. Since

� is relatively high, the brute force approach has much
higher complexity which is a higher-degree polynomial

with a big constant factor. Therefore, CHARM makes the
data hosting decision much practical in a real system.

We have demonstrated how to choose storage mode and
clouds for a file with certain size and read frequency. Then
we illustrate when and how many times should the storage
mode be changed in the following section, since the access
frequency of a file usually changes with time goes by.

5 TRANSITION SCHEME

5.1 Transition of Storage Modes

Intuitively, when a file changes from “hot” to “cold”, we
should change its storage mode. More specifically, when the
read frequency of the file drops below or increases above a
certain value, changing storage mode can save more money.
The value is determined by the prices of clouds. Given the
available clouds including their prices and availability, we
can figure out the storage mode and the selected clouds with
the input of file’s size and read count, using Algorithm 1.

We calculate the storage modes for different file sizes and
read counts, in order to get a storage mode table (see Fig. 4
in Section 7 for an example). The table has two dimensions:
file size and read count. There is one corresponding storage
mode for each pair of file size and read count, but the stor-
age modes are the same for many different pairs. There are
explicit boundaries between different storage modes in the
table. However, it does not mean we should change the stor-
age mode once a file’s storage mode crosses the boundary,
because the transition of storage mode also generates cost,
which is definitely not negligible. Bandwidth is (much)
more expensive than storage space for online storage serv-
ices. The cost of one read access for a file can afford this file
to be stored for around four months with no read access.
Thus, we should be prudent to deal with storage mode tran-
sition. A good transition scheme can actually save large
amount of money.

We first demonstrate the implementation of storage
mode transition: the proxy gets the data from the clouds
where the data is originally stored, and puts it into the
newly selected clouds using new storage mode. The imple-
mentation consumes out-going bandwidth, in-going band-
width, and several operations (i.e., GET, DELETE, and
PUT). Since DELETE and in-going bandwidth are free, the
transition cost T is composed of out-going bandwidth, GET,
and PUT. Out-going bandwidth is more expensive than

Fig. 4. The storage modes with different file size and read count. In the
figure, there are four gray levels (1-4) which represent different storage
modes. Gray level 1-4 are (7, 9), (7, 9), (6, 8), (1, 2) respectively. Gray
levels 1 and 2 use different clouds though they have the samem and n.
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storage, so we have to make sure that the cost of transition
can be earned back by the new storage mode. That is, the
following inequality has to be met:

Mf > Mp þ T; (11)

whereMf andMp are the monetary cost of the previous stor-
age mode and new storage mode respectively. They are both
calculated using the read frequency provided by Predictor.

Eq. (11) is impacted by the time period t. Since the stor-
age cost is storing a file of size S for a time period t and cr is
the read count during t, we should set t first in order to cal-
culate Mf and Mp. So, Eq. (11) means the new storage mode
will earn back the transition cost within the time period t (t
equals 30 days in our experiments). We implement the tran-
sition for each one month, which also equals to the time
period t.

We calculate the storage mode for each file using its pre-
dicted read frequency in the time interval t. If the storage
mode is different from the previous one and it meets
Eq. (11), we change the storage mode of this file.

The storage mode table can be calculated in advance,
because it is only affected by the available clouds, their pric-
ing policies, and availabilities. When deciding the storage
mode for each file, we use the read frequency and the size
of the file to look up the table for the corresponding storage
mode. This table is re-calculated through Algorithm 1, only
when availabilities and prices are modified, some clouds
are kicked out due to performance issue, or new available
clouds emerge. And the new table will be input into
Algorithm 2 to accommodate these situations. Algorithm 2
shows the detailed transition process.

Algorithm 2. Storage Mode Transition Process

Input: the generated table G, the ith file’s current storage
modeM½i�, current read frequency R½i�, file size S½i�

Output: void
1 dSize the size dimension of G
2 dRead the read frequency dimension of G
3 for each file i do
4 for j in len(dSize) do
5 if S½i� � dSize½j� then
6 dS  j
7 else
8 break
9 end
10 end
11 for j in len(dRead) do
12 if R½i� � dRead½j� then
13 dR j
14 else
15 break
16 end
17 end
18 ifM½i� 6¼ G½dS�½dR� then
19 T  monetary cost of transiting fromM½i�
20 ifM½i� > G½dS�½dR� þ T then
21 transit fromM½i� to G½dS�½dR�
22 end
23 end
24 end

5.2 Complexity

Here we analyze the computational complexity of this algo-
rithm. The two loops in lines 4 and 11 are used to look up
the table, the complexity of which can be approximately
considered constant, since the table is small and has only
limited number of values in each dimension. Specifically,
since the table is split into several pieces, we only need to
find out which piece the file belongs to. Transition cost in
line 19 can also be calculated in constant time.

Thus, the complexity of this algorithm is mainly the first
loop, and the worst case complexity is OðFnÞ, where Fn is
the number of files. In order to reduce the complexity fur-
ther, we can classify files with similar access patterns into
groups, and implement transition in the unit of group. This
is out of the scope of this paper.

6 DISCUSSION

6.1 Performance of Multi-Cloud

Lots of data centers are distributed around the world, and
one region such as America, Asia, usually has several data
centers belonging to the same or different cloud providers.
So technically all the data centers can be access by a user in
a certain region, but the user would experience different
performance. The latency of some data centers is very low
while that of some ones may be intolerable high. CHARM
chooses clouds for storing data from all the available clouds
which meet the performance requirement, that is, they can
offer acceptable throughput and latency when they are not
in outage.

The storage mode transition does not impact the perfor-
mance of the service. Since it is not a latency-sensitive pro-
cess, we can decrease the priority of transition operations,
and implement the transition in batch when the proxy has
low workload.

6.2 Service Level Agreement and Auditing

CHARM uses the availabilities declared in the SLAs of
cloud services. However, SLA does not represent the real
Mean Time Between Failures (MTBF) of the cloud service,
that is, it does not represent the availability of the system
directly. Violating SLA is allowed, and cloud vendors only
need to pay “service credits” for the violation. So, for cloud
vendors, there is a tradeoff between SLA and payment. In
order to test the real availability, some works [31] propose
approaches to audit the real performance of clouds. Some of
them require the coordination of cloud vendors, such as
providing specific service API, to verify the real availability.
CHARM can also rely on the performance data from third-
party auditing to make storage decision. A work in [32]
takes the first step to systematically detect correlations of
clouds. We can take the output of their model into consider-
ation to select the available clouds, for example, discarding
the clouds which have high correlations.

6.3 Concern of Erasure Coding

The computational complexity of erasure coding is one of the
most significant concerns, because it needs to implement lots
of multiplication operations in Galois Field. The CPU
resource may become the bottleneck of the applications and
serviceswhich apply erasure coding. Recently, however, this
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is not the case for erasure coding scenarios any more, since
we can leverage Intel SIMD Instructions to greatly increase
the coding speed (the multiplication speed is as high as 8
GB/s using commodity CPU such as Intel Core i7-3770) [26].
Thus, coding complexity can be addressed easily using com-
modity CPUs, making erasure coding more popular in stor-
age systems [33], [34]. Moreover, we give n an upper limit to
guarantee high performance as described in Section 4.3,
which reduces the computational overhead further. How to
set the upper limit is the problem that the real system devel-
opers have to deal with through real worldmeasurements.

6.4 Other System Concerns

As a holistic storage system, there are several other factors
to be considered, such as cache strategies, geographical data
consistency, etc. However, we only focus on the data host-
ing strategy to minimize monetary cost while meeting flexi-
ble availability requirements. Though we have considered
the complexity and feasibility when designing this strategy,
the system design is out of the scope of this paper, and we
put the detailed system design of multi-cloud data hosting
into future work.

7 EVALUATION

We conduct extensive simulations to evaluate the perfor-
mance of our scheme. The simulations are driven by two
typical real-world traces. We first briefly introduce the two
collected traces and present the evaluating methodology,
then show the performance of our scheme. At last, to make
the results more convincing, we also implement the proto-
type experiments on top of four mainstream commercial
clouds, the results of which prove the correctness of the sim-
ulations and the efficacy of CHARM.

7.1 Datasets

The two traces are collected from AmazingStore [20] and
Corsair [21]. AmazingStore is a popular file storing and
sharing platform in China. It has been deployed and main-
tained since April 2009, and has 10K log-in users everyday.
The files in this system are mainly music and video. Corsair
is a cloud storage system deployed at Tsinghua University,
China. There had been already 19,892 registered users and
17.5 TB of data by September 2010. The files stored in this
system have diverse types. We collected the trace of Ama-
zingStore from January 1, 2012 to July 15, 2013 from four
main servers. For Corsair the trace is collected from March
to July 2010. Each line of the traces is a file access record
which includes timestamp, file name, file size, and opera-
tion type (e.g., GET, PUT). The detailed properties of the
two traces are shown in Table 4.

We use 15 clouds in the experiments, and they all meet
the requirement of performance. The prices of these clouds
are configured referring to the prices of current famous
clouds (e.g., Amazon S3, Windows Azure) and their data
centers. We set the clouds’ availability in the interval of
½99:5; 99:95 percent�.

7.2 Methodology

We split the traces into pieces with the same time interval
which is 30 days in our experiments. The pieces are put into

CHARM one by one. CHARM reads the piece of the trace to
get the files’ size and current read count. Then it decides the
storage mode, and calculates monetary cost for each file.
We set the upper limit � to be 9 in CHARM.

We compare our scheme with four different data hosting
schemes as described below:

RepRa [22]. Pure replication is applied in this scheme. It
selects clouds randomly from all the available clouds until
the selected clouds meet the required availability. Read
access is directed to the cloud with the lowest read cost.

RepGr [23]. It also uses pure replication, however, it
greedily selects clouds with low bandwidth price until the
selected clouds meet the required availability. Read access
is tackled the same as RepRa.

EraRa [16]. Pure erasure code is applied in this scheme. It
sets n ¼ 9, nine clouds are chosen from all the 15 clouds ran-
domly. Then it tries m from n to 1 until it finds the value
that meets the availability requirement.

EraGr [24]. Similar to EraRa, it also sets n ¼ 9. Firstly, all
the 15 clouds are sorted by storage price from low to high. It
chooses the first nine clouds. Then it tries m from n to 1 to
find the value that first meets the availability requirement.

These four schemes tackle the traces, and calculate mone-
tary cost in the same way with CHARM.

7.3 Storage Mode Table

We generate the storage mode table based on the 15 clouds
guaranteeing 99.9999 percent availability. We use different
file sizes varying from 1 KB to 1 GB and different read
counts varying from 0 to 100 with the step of 0.1 to calculate
their corresponding storage modes (using Algorithm 1).

We get four different storage modes as shown in Fig. 4
with gray levels from 1 to 4. We only plot the read count
from 0 to 3, because the storage modes are the same (i.e.,
gray level 4) for the read count larger than 3 no matter how
much the file’s size is. When the file’s size is larger than 1
MB, the storage modes have explicit vertical boundaries
with different read counts. That means, for large files, read
count is the key to impact the storage mode.

When the file’s size drops below 1 MB, the operation cost
has more and more impact on the total cost. High read fre-
quency (generating high bandwidth cost) gives advantages
to replication mechanism (i.e., m ¼ 1). So, similarly, high
operation cost also gives advantages to replication mecha-
nism when the file’s size is small. That is why gray level 4
puts its feet into the region of lower read count and smaller
file size. This storage mode table only depends on prices of
the available clouds and required availability. If the prices
change, the table will change accordingly, becoming a dif-
ferent one.

TABLE 4
Key Facts of the Datasets

Items AmazingStore Corsair

Time span (Days) 575 122
No. of files 130,244 934,831
Total size (GB) 43,222 5,638
Avg file size (MB) 339.8 6.18
No. of read requests 5,209,493 1,924,451
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7.4 Monetary Cost

We set different availability levels from 99.99 to 99.99999 per-
cent, and run the two traces applying the five schemes respec-
tively. The total cost of CHARM includes storage/
bandwidth/operation costs and transition cost. The results of
AmazingStore trace are shown in Table 5. Since the read
count of files in AmazingStore trace is high (i.e., 39.9 on aver-
age in 575 days), RepGr is better than EraGr except the high-
est availability case. In order to guarantee high availability,
RepGr has to store more replicas whose storage cost exceeds
the saving on bandwidth. The cost of EraGr for 99.99 percent
is higher than that in higher availability, because EraGr has to
reducem to get higher availability, and it happens to exclude
the cloud with higher bandwidth cost. CHARM has the low-
est cost, it reduces about 9.3-23.1 percent compared to RepGr,
and reduces about 19.3-24.3 percent compared to EraGr.

From the detailed monetary cost as shown in Table 7, we
can see that CHARM spends a little more storage cost to
achieve much lower bandwidth cost. The detailed monetary
cost of other availability levels shows similar results. RepRa
and EraRa select clouds randomly, so the cost does not
show strictly increase with the increase of availability.

The results of Corsair trace are shown in Table 6. In this
case EraGr is better than RepGr, because the read frequency
of Corsair is relatively low, only about 2.1 on average in 122
days. For RepGr, the saving on bandwidth cannot afford
high storage cost. From Table 8, we can clearly see that
RepGr saves 37 percent on bandwidth cost but spends 138
percent additional storage cost compared to EraGr. CHARM
is still the best one in the five schemes. It reduces about 23.3-
43.4 percent of the cost compared to RepGr, and reduces
about 6.1-10.4 percent of the cost compared to EraGr.

In our experiments, the storage mode transition is imple-
mented 80,062 times with 719.74 dollars transition cost for
AmazingStore trace with 99.99999 percent availability.
While for Corsair trace the numbers are 11,893 times and 1.9
dollars. This shows that we use low transition cost to cost-
efficiently re-distribute data.

7.5 Tolerating Price Adjustment

We adjust the price of clouds based on the fact that cloud
providers have adjusted the price for several times [7], [8].

So when the simulation runs half of the traces (i.e., nine
months for AmazingStore, and two months for Corsair), we
decrease and increase the price by 50 percent respectively to
simulate the situation. Moreover, the prices that are modi-
fied include storage, bandwidth, and operation.

The cloud we choose for price decrease is not used by the
five schemes. That is to say this cloud has relatively higher
price before price adjustment. The result of 99.999 percent
availability is shown in Table 9, other experiments have
similar results. When the price adjustment occurs, CHARM
re-calculates the storage mode table, and uses the new table
to store data and implement transition. So it shows great
adaptability compared with the other four schemes which
cannot change the clouds dynamically according to the
price fluctuation. CHARM saves 23.4 and 33.4 percent mon-
etary cost compared to RepGr and EraGr respectively for
AmazingStore trace. The Corsair trace shows similar results
of 28.9 and 13.4 percent.

We increase the price of the cloud that is used by all the
five schemes. If the price is high enough, CHARM may
exclude this cloud, and transfer the data on this cloud to
other clouds. However, the other schemes have to bear the
price adjustment. The result shows CHARM cuts 16.6 and
25.4 percent monetary cost compared to RepGr and EraGr
respectively for AmazingStore trace. Similarly, for Corsair
trace, the savings are 35.2 and 13.3 percent respectively.

7.6 Supporting Varying Availability

Different types of data may require different availabilities
[35]. For example, backup data usually requires relatively
low availability, while documents in work folders demand
high availability. The experiments in Section 7.4 prove the
effectiveness of CHARM in this scenario since it performs
best for various availabilities.

However, a more complicated use case is that the avail-
ability is varying with the access frequency of data. For
example, “hot” data may demand high availability while
“cold” data does not have that strict requirement. In order
to show that CHARM can also naturally adapt to this sce-
nario, we run the two traces and assign different availabili-
ties to the files according to their access frequency. More

TABLE 5
Monetary Cost of Different Schemes for AmazingStore Trace

(Thousand $)

Availability RepRa RepGr EraRa EraGr CHARM

99.99% 383.18 239.38 285.55 277.71 210.09
99.999% 377.38 239.38 281.31 275.25 212.64
99.9999% 283.68 239.38 270.14 275.25 217.19
99.99999% 453.29 288.71 269.67 275.25 222.08

TABLE 7
Detailed Monetary Cost of AmazingStore Trace for 99.99999

percent Availability ($)

Items RepRa RepGr EraRa EraGr CHARM

storage 158418 156677 67983 65655 77958
bandwidth 294867 132030 201681 209571 144118
operation 2.08 0 9.91 21.05 0.7699
total 453287 288707 269674 275248 222077

TABLE 6
Monetary Cost of Different Schemes for Corsair Trace($)

Availability RepRa RepGr EraRa EraGr CHARM

99.99% 4824.00 4433.20 3755.43 3449.80 3139.79
99.999% 6413.49 4433.20 3881.68 3639.62 3260.59
99.9999% 6069.24 4433.20 4081.91 3639.62 3383.61
99.99999% 6206.31 6036.55 3901.28 3639.62 3402.34

TABLE 8
Detailed Monetary Cost of Corsair Trace for 99.99999 percent

Availability ($)

Items RepRa RepGr EraRa EraGr CHARM

storage 5262.77 5093.00 2263.56 2134.21 2215.50
bandwidth 943.55 943.55 1633.99 1497.70 1186.30
operation 0 0 3.74 7.71 0.55
total 6206.32 6036.55 3901.28 3639.61 3402.35
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specifically, in our experiments three read requests a month
is the boundary between high (99.99999 percent) and low
(99.99 percent) availabilities. In order to avoid switching
back and forth frequently, when the frequency drops below
one request a month we change the availability from high to
low, and when the frequency rises above five requests a
month, the availability is changed from low to high. Setting
these threshold values is reasonable since there is no strict
boundary between different availabilities. The other
schemes also use the same way to switch the availability.

The results are shown in Table 10, and we omit the
results of RepRa and EraRa. CHARM outperforms RepGr
and EraGr by 13.8 and 21.0 percent savings respectively for
AmazongStore, and by 30.0 and 9.8 percent savings for Cor-
sair. If we compare the results with the numbers in Tables 7
and 8, we can see that the storage cost decreases a lot since a
proportion of files are stored using lower availability, and
the bandwidth cost only increases a little. The switch cost of
RepGr is much lower than EraGr, because RepGr uses only
DELETE operation to switch from high to low availability,
while EraGr needs to GET the file first and PUT the file
using the storage mode of low availability.

The availability of clouds can also be changed, for
instance, from low to high due to the upgrade of devices, or
from high to low due to excessive operating cost of cloud
vendors. Thus, we run experiments to simulate these sce-
narios. We reduce the availabilities of two clouds that are
used by the three schemes to 90.0 percent. The result is that
CHARM outperforms other schemes by 10.3-44.0 percent,
revealing flexible adaptation. We do not show detailed
numbers due to the limited space.

7.7 Data Distribution

To reveal more details about data placement, we show the
data distribution in clouds in Fig. 5. It is the result of

99.99999 percent availability, other experiments have simi-
lar data distribution. AmazingStore trace has high read fre-
quency, CHARM uses storage mode with m ¼ 1 and n ¼ 3
(i.e., replication) to store “hot” files. If “hot” files become
“cold”, their storage modes are changed to the storage
modes with higherm and n.

As shown in Fig. 5a, there are three clouds storing
more data than the other six clouds to serve “hot” data
access. There are two obvious decrease points of
“CHARM-3”, which mean that many files become “cold”
ones and their storage modes are changed. The vertical
coordinate is log scale. We can see that RepGr places all
the data in three clouds, storage usage of which is much
higher than that of CHARM and EraGr. EraGr uniformly
distributes data among 9 clouds. Besides getting the low-
est monetary cost, CHARM is prone to distribute data
evenly, which efficiently reduces the vendor lock-in risk.
The data distribution advantage of CHARM can be seen
more clearly in Fig. 5b. Since there is much less “hot”
data compared to AmazingStore trace, the three clouds in
CHARM for serving “hot” data do not store much more
data than the other six clouds. The data distribution of
CHARM is very similar to that of EraGr.

7.8 Applying to Complex Request Pattern

Clearly, RepGr usually performs better for AmazingStore
trace while EraGr performs better for Corsair trace.
CHARM combines the merits of the two schemes to achieve
the best performance, since it picks different storage modes
for the files with different access frequency, which deter-
mines great adaptation.

Cache is a commonly used technique to relieve the bur-
den of back-end storage, shaping the data access pattern
that is actually served by the back-end storage. Since Ama-
zingStore trace has higher read frequency, we use a cache to
filter the trace to show that CHARM well applies to variousTABLE 10

Monetary Cost of Different Schemes with Varying Availability of
Files ($)

Datasets Items RepGr EraGr CHARM

AmazingStore storage 118133.1 59241.9 71679.9
bandwidth 132652.7 214479.2 144487.5
operation 0 21.289 0.75109
switch 622.7 3752.8 1141.4
total 250785.8 273742.4 216168.1

Corsair storage 3553.8 1878.1 1957.5
bandwidth 944.0 1606.6 1192.9
operation 0 8.2113 0.4662
switch 0.459 55.13 2.34
total 4497.8 3492.9 3150.8

“switch” means the monetary cost generated by switching availability
requirements.

Fig. 5. Data distribution of the two traces. The name in the legend is
composed of two parts, the first part is the name of the scheme and the
second part is the number of the clouds that store the same amount of
data. For example, “RepGr-3” means RepGr uses three clouds and they
store the same amount of data, the line in the figure shows the amount
of data in one cloud. CHARM uses nine clouds with three different stor-
age usages.

TABLE 9
Monetary Cost of Different Schemes with Price Fluctuation ($)

Datasets Price fluctuation RepRa RepGr EraRa EraGr CHARM

AmazingStore 50% 279913.11 239382.75 300459.22 275247.57 183374.50
150% 387825.87 255135.52 299536.90 285192.69 212821.77

Corsair 50% 5125.73 4433.20 3671.78 3639.61 3152.10
150% 4693.39 5051.27 4184.60 3777.82 3274.46
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access patterns. More specifically, we use LRU for this cache
with the cache size varying from 1 to 2,000 GB. Fig. 6b
shows the total number of requests received by the back-
end storage after filtered by the cache. With the increase of
the cache, read count drops quickly. Then we apply the five
schemes to the filtered traces with 99.99999 percent
availability.

The total costs of different schemes are shown in Fig. 6a
(RepRa and EraRa are not plotted because their costs are
also affected by the randomly selected clouds). When the
cache size is small, the files still have high read frequency,
and many files change from “hot” to “cold”. CHARM choo-
ses the storage mode with low bandwidth cost for “hot”
files, and chooses the one with low storage cost for “cold”
files, and also implements necessary storage mode transi-
tion. So, it performs much better than RepGr and EraGr.

When cache size increases, requests that go to back-end
clouds decrease, making the proportion of bandwidth cost
much smaller. So RepGr gradually loses its advantage. On
the contrary, EraGr performs better due to its advantage on
storage cost, approaching the performance that CHARM
achieves. But some files still have relatively high access fre-
quency, and EraGr cannot get the optimal m and n in some
cases. That is why CHARM still performs better than EraGr
when the cache is large. This experiment proves that
CHARM effectively adapts to diverse access patterns, and
achieves the best performance.

7.9 Prototype Experiments

We implemented the prototype experiments on four main-
stream commercial clouds: Amazon S3, Windows Azure,
Google Cloud Storage and Aliyun OSS, and pick 10 differ-
ent data centers2 from them. We created accounts in the
four clouds, and replayed AmazingStore trace and Corsair
trace for a whole month, using three different schemes (i.e.,
CHARM, RepGr, EraGr) which choose their preferred data
centers from the 10 available ones.

In order to make sure the experiments can be finished in
one month, we scale down the traces on the premise of not
affecting the correctness. That is, we randomly select 1 per-
cent files from the two traces, gathering their access records
into two small-scale traces. Since the files in AmazingStore

is large (e.g., hundreds of MB, several GB), we make them
10x smaller, which also does not impact the experiment
effect. We replay the 10th month of AmazingStore trace and
the 3rd month of Corsair trace. Before the implementation,
we put the files that already exist before the two time points
into clouds. Then we replay the traces of the specified
months. We also run simulations for the same traces to con-
trast with the real-world experiments.

The detailed results are shown in Table 11. For the proto-
type experiments, CHARM outperforms RepGr and EraGr
by 21.7 and 27.8 percent for AmazingStore trace, and simi-
larly the savings are 37.8 and 13.8 percent for Corsair trace,
which proves the efficacy of CHARM. Equally importantly,
the prototype experiments show similar results as the simu-
lation results, which proves the correctness of our
simulations.

There are two interesting discrepancies between the pro-
totype experiments and the simulations. The one is that the
total cost generated in the prototype experiments is around
$0.1 less than that in the simulations for AmazingStore
trace, and the difference is about $0.3 for Corsair trace.
There are two reasons for this. Firstly, according to our
observation, different vendors apply diverse statistic meth-
ods and use different precision to compute the resource
usage of customers. Secondly, cloud vendors are prone to
round down the amount of resource usage, making the real
cost a little smaller.

The other one is that operation cost in the prototype
experiments is higher than that in the simulations. This is
because Google Cloud Storage presents about 1x more
transactions than the number of GET operations we gener-
ated, and Windows Azure presents about 5x more transac-
tions. Maybe there are some types of transactions that
should be issued together with GET operation. Since the
proportion of operation cost is very small, the total cost is
not impacted.

8 RELATED WORK

With the blossom of cloud services [36], there is a recent
interest in addressing how to migrate data and applications
into clouds seamlessly [37], [38]. The system designed in
[37] migrates Network File System (NFS) into the cloud,
and meanwhile makes it feel like working locally. A similar
work in [38] proposes a hybrid cloud-based deployment,
where enterprise operations are partly hosted on-premise
and partly in the cloud.

Lots of works optimize the performance of the services
from diverse aspects. The SCADS Director [39] reconfigures
the storage system on-the-fly, while guaranteeing strict per-
formance service-level objectives (SLOs) expressed using
upper percentiles of request latency. Scc [40] addresses how
to select the best combination of diverse storage devices
(e.g., disks, SSDs, DRAM) to minimize cluster storage cost.
Some works focus on the selection of clouds, ISPs, and serv-
ers [22], [23], [41]. For example, [23] focuses on placing con-
tent using multiple content distribution networks to
optimize cost and performance. DONAR [22] is a distrib-
uted system which uses a distributed algorithm to direct cli-
ent requests to a particular replica, based on performance,
load, and cost. DREAM [41] focuses on VoD applications.

Fig. 6. Results of different cache sizes. The left one is total monetary
cost of CHARM, RepGr and EraGr on different cache sizes. The right
one is total read count of filtered traces with different cache sizes.

2. Amazon S3: Standard, Northern California, Singapore, Tokyo.
Windows Azure: West US. Google Cloud Storage: America, Asia.
Aliyun OSS: Beijing, Qingdao, HongKong. The expense is generated
using the prices in 2014.10.22-2014.11.21. We skip the first free tie of
Amazon S3 (i.e., the first 1 GB outgoing bandwidth).
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There is a common concern that moving data into a sin-
gle could would incur vendor lock-in risk. So many works
propose storage architectures and mechanisms based on
multiple clouds. DepSky [15] stores data, even critical data
(e.g., medical record databases, financial data), into multiple
clouds, guaranteeing data availability and security.
NCCloud [42] designs a coding scheme to recover data with
less bandwidth consumption when a cloud busts. To reduce
monetary cost, RACS [16] applies the RAID-like technique
at the cloud storage level, which avoids vendor lock-in effi-
ciently and reduces the cost of switching cloud vendors.
Scalia [24] is inspired by RACS, and moves a step further
that taking data access pattern into consideration, but it
does not consider different redundancy mechanisms.

Moreover, for convenient deployment of multi-cloud
services, many new tools are developed, such as Apache
Libcloud [19] which provides a unified interface above dif-
ferent clouds. New types of vendors, such as DuraCloud
[17], Cloud Foundry [18], have emerged and been growing
rapidly. DuraCloud provides a convenient service to move
content copies into the cloud, and store them with several
different providers, all with just one click. Cloud Foundry is
an open platform as a service, providing a choice of clouds,
developer frameworks, and application services. It becomes
much faster and easier to build, test, deploy, and scale
applications.

There are two works about the comparison between era-
sure coding and replication in Peer-to-Peer systems [27], [28].
However, nowork compares these twomechanisms inmulti-
cloud environment, which is proved very different from the
results in the two works according to our analysis in Section
3. On the other hand, data hosting in Grid/Peer-to-Peer stor-
age systems has been researched a lot [43], [44], [45], [46]. A
prominent property of these storage systems is that the stor-
age nodes are unstable or anomalous. However, this is not
the case formulti-cloud environment,whichmakes it difficult
and unbefitting to deploy those data hosting schemes.

A similar work to ours is CAROM [47], which replication
and erasure coding in multiple data centers. But it does not
consider the heterogeneity of multi-cloud and the selection
of clouds. They design a cache in the primary data center.
When a file is swapped out, this file is stored using erasure
coding across multiple data centers. When this file is
accessed again, it will be stored back to the cache. This
scheme is efficient for the trace used in their paper. How-
ever, its performance relies on the characters of the targeted
trace, more specifically, the cache hit rate (about 90 percent
for their trace). For AmazingStore trace, the hit rate is only
44.7 percent with the cache size of 2 TB (see Fig. 6b).

Frequent data swap inevitably induces much additional
monetary cost to CAROM, which makes it even not compet-
itive compared with the greedy data hosting schemes.

The data hosting schemes mentioned above focus on dif-
ferent aspects, e.g., optimizing performance, avoiding
vender lock-in. CHARM, however, appeals to the particu-
larities of multi-cloud environment, and hosts data into
multiple clouds cost-effectively, while guaranteeing flexible
availability and avoiding vender lock-in.

9 CONCLUSION

Cloud services are experiencing rapid development and the
services based on multi-cloud also become prevailing. One
of the most concerns, when moving services into clouds, is
capital expenditure. So, in this paper, we design a novel
storage scheme CHARM, which guides customers to dis-
tribute data among clouds cost-effectively. CHARM makes
fine-grained decisions about which storage mode to use and
which clouds to place data in. The evaluation proves the
efficiency of CHARM.
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