
Link Scanner: Faulty Link Detection for Wireless
Sensor Networks

Qiang Ma1,2, Kebin Liu2, Xiangrong Xiao3, Zhichao Cao1,2, Yunhao Liu1,2

1 Department of Computer Science and Engineering, Hong Kong University of Science and Technology

2 School of Software and TNLIST, Tsinghua University, Beijing, China

3 School of Information Engineering, Zhejiang Agriculture&Forest University

{maq, kebin, xiaoxr, caozc, yunhao}@greenorbs.org

Abstract—In large-scale wireless sensor networks, it proves
very difficult to dynamically monitor system degradation and
detect bad links. Faulty link detection plays a critical role in
network diagnosis. Indeed, a destructive node impacts its links’
performances including transmitting and receiving. Similarly,
other potential network bottlenecks such as network partition
and routing errors can be detected by link scan. Since sequen-
tially checking all potential links incurs high transmission and
storage cost, existing approaches often focus on links currently in
use, while overlook those unused yet ones, thus fail to offer more
insights to guide following operations. We propose a novel scheme
Link Scanner (LS) for monitoring wireless links at real time. LS
issues one probe message in the network and collects hop counts
of the received probe messages at sensor nodes. Based on the
observation that faulty links can result in mismatch between the
received hop counts and the network topology, we are able to
deduce all links’ status with a probabilistic model. We evaluate
our scheme by carrying out experiments on a testbed with 60
TelosB motes and conducting extensive simulation tests. A real
outdoor system is also deployed to verify that LS can be reliably
applied to surveillance networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used
in many application areas such as infrastructure protection,
environment monitoring and habitat tracing. The reliability of
individual links’ transmissions is crucial in these applications,
e.g., in a surveillance network [14], the transmissions must be
reliable to avoid false alarms and missed detections. Compared
to the wired networks, it seems much more essential to detect
link faults rather than node faults in WSNs. A wireless link
itself virtually exists, which means we can’t directly observe
and assess whether it performs well or not [17], [21]. What
is more, It proves difficult to localize the faulty links under
a dynamic mal-condition in the wild, for the link quality will
significantly be impacted by the nature environment like trees
in the forest and flow in the ocean [3], [14].

Multi-hop networks always suffer more harm than single-
hop networks due to link failures. For example, a critical link
may cause a large area of partition, or significantly interfere
with routing protocol among the nodes, producing some
problems such as routing cycle and even network partition.
Compared to single-hop networks, faulty link detection is more
difficult to proceed in the multi-hop networks due to their
topology features. A packet has to traverse multiple links to
the sink, it is for this reason that exactly localizing a faulty
link becomes really hard if only on the basis of whether

the packet arrives at the sink or not. Therefore, faulty link
detection becomes one of the most critical issues in multi-hop
network diagnosis. Indeed, according to the status of a link,
we are able to explain many failures like packet loss, routing
failure, partition and so on. Notably, link performance actually
reflects a network’s reliability and bottleneck if exist.

Although single link failures are more common, multiple
link failures occur due to shared risks such as failure of a link
while another link is under maintenance, or natural disasters
that cause links traversing a region to fail. In [1], the authors
use monitoring paths and cycles to localize single link and
Shared Risk Link Group (SRLG) failures. They also prove
that (k+2)-edge connectivity1 was necessary and sufficient to
uniquely localize all SRLG failures involving up to k links
with one monitor. In practice, however, not all sensor networks
can satisfy this strict condition, especially in the cases we
spread the sensor nodes randomly in the area of interest. In
addition, in most cases we are not allowed to set any more
monitors after the deployment. What we expect is to utilize
the rule-free probes (i.e., without computing the exact probing
paths) to achieve our detection.

One of the most peculiar routing characteristics of WSN
is routing dynamics. It is not surprising that a sensor node
frequently changes its parent to forward packets. Unfortu-
nately, many existing approaches just aim to detect the faulty
links which had been behaving badly, but fail to offer an
inspection report about other unused yet ones, thus never
further suggest the nodes how to reroute when the current
routing path is less than satisfactory. To solve the above
problems, in this work we propose Link Scanner (LS), a novel
probe-based and rule-free detection approach for discovering
faulty links in sensor networks. The object of LS is to provide
a blacklist containing all possible faulty links. With such
a blacklist, further analysis and recovery processes become
possible, including (i) exploring the root causes of observed
symptoms in the network, (ii) adjusting routing strategy for
the related nodes, (iii) offering the spare list of links for every
node. As a result, we not only achieve the goal of diagnosis,
but also take a big picture of current network, which guides the
following applications. In LS, we first flood a probe message
in the network. Then each node is expected to receive multiple

1A network is said to be k-edge-connected if the removal of any k-1 links
will retain network connectivity.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

2688





3

1-hop probe
2-hop probe
3-hop probe

Sink

A

B

C

Fig. 2. Probes in Flooding. When sink and node B,C respectively broadcasts
the probe, node A should overhear all of them. Notably, the probe from sink is
only 1-hop as well as the other two are 2-hop and 3-hop (i.e., sink → B → A
and sink → B (A ) → C → A ). But we will fail to distinguish the two 2-hop
probes at C: sink → A → C and sink → B → C .

from A or B. Since node C isn’t aware of its location, it
will broadcast the probe to ensure the coverage of flooding.
Eventually, node A receives three probes from sink, node B
and node C respectively, i.e., the number of received probes
should be equal to that of in-edges. To cover all the possible
links in the network, besides the number of probes, the record
also needs to distinguish the received probes. Now if A only
gets two probes, for example, from sink and C, it means
that either B fails to get the probe from the sink, i.e., link
sink → B is bad; or the link B → A is broken. In addition,
if B records that it actually gets the probe, we obviously can
infer that link B → A is broken.

A straightforward way to distinguish the probes is adding
the node ID into the probes, so that each node records the
parent where the probe comes from. Such an approach, being
beneficial and accurate in a small network, or some of specific
topology, may not work well for large-scale sensor networks,
or dense networks where the number of neighbors may be
more than 30: where even we use 2 bytes to identify nodes
means each node should consume 60 bytes overhead. Clearly,
we need to set up a good tradeoff between the transmission
overhead and information usefulness. Based on our recently
deployed sensor network system, GreenOrbs [14], we observe
that hop count can distinguish different probes to some degree.
For example, if node A records the corresponding hop count
for every probe, we can expect that there is one for each
hop count number, e.g, one-hop probe comes directly from
sink, 2-hop probe is from node B and the 3-hop one is from
node C. To record the hop count number consumes much less
resource than to record the node ID. In our design, we use the
data structure in the form (MinHop, n0, n1, ..., nk−1), where
MinHop represents the minimum hop count in the received
probes and n0 represents the number of probes with MinHop-
hop. Similarly, nt(0 ≤ t ≤ k−1) is the number of probes with
(MinHop + t)-hop, and MinHop + k − 1 is the maximum
hop count in the received probes.

In many cases, each node only needs to maintain a record of
4 bytes, i.e., (MinHop, n0, n1, n2). For each node A, all A’s
probes potentially come from A’s neighbors. Assume that A’s
MinHop is C, then every A’s neighbor (e.g., B) possibly will
receive A’s (C+1)-hop probe such that the hop count of B’s
probe is at most C+2. So A only needs to record the hop count

Sink

N

N1 N2

Nk

......

probe lost
probe received(k+1)-hop probe

2-hop probe

Fig. 3. Probe Lost. Node N gets a 1-hop probe from sink while node Nk
fails to get the probe from N since link N → Nk failed. Along another path
sink → N1 → N2... → Nk , Nk gets a k-hop probe, which is the only
probe received by Nk . So Nk broadcasts a (k+1)-hop probe. If N receives
this probe, it maintains a record like (1,1,0,...,1), where there are k-1 ’0’s.

between C and C+2 (including C and C+2). However, some
corner cases happen due to asymmetric links as illustrated
in Fig. 3. Node Nk (k > 2) loses node N ’s 2-hop probe
but gets a k-hop probe along the path N1 → N2... → Nk

which is its only probe. So Nk should broadcast a (k+1)-hop
probe to its neighbors. If N actually receives this probe, it
finally reports like (1,1,0,...,1), where there are k-1 ’0’s. This
kind of asymmetric information extremely improves our latter
inference but costs much transmission overhead. To reduce the
transmission overhead, we design each byte in the record as
follows:

• If the first bit is ’0’. That means it indicates a number of
hop count.

• Else the first bit is ’1’. Then the remaining 7 bits indicate
the number of successive ’0’ in the record.

With our design, in Fig. 3, the k-1 successive ’0’s can
be represented by one byte ”1x6x5x4x3x2x1x0”, where
”0x6x5x4x3x2x1x0” equals to k-1 after binary-decimal con-
version. This design is feasible as we assume that there are
no more than ”01111111”, i.e., 127 probes traverse the same
hop count, and no more than 127 ’0’s in the final report.

In practice, however, much information vagueness still
exists when we are inferring faulty links with hop count. For
example, in Fig. 2, assume that both A and B perform as
our expectation (i.e., (1,1,1,1)), and C only gets one 2-hop
probe (i.e., (2,1)). In this case, what we can accurately infer
is that C misses a probe from A or B, that is, one of link
B → C and link A → C is broken. To solve this problem,
the most straightforward metric is link length, i.e., without any
information provided by other nodes, we can simply deduce
that the longer link may result in probe loss. In a large-scale
network with a more intricate performance, simply relying on
the relationship between link length and PRR is proved to be
inaccurate, thus we need to consider more link features based
on real system observations.

C. DLP
DLP (Disjunctive Logic Programming) is a formalism rep-

resenting indefinite information. Similar to Prolog, language
statements consist of facts, inference rules, strong constraints
and weak constraints. In DLP, we initiate some facts based on
our observation, which are definitely true and used to explore

2013 Proceedings IEEE INFOCOM

2690



4

FACT MEANING

node(N, X, Y ) a node with ID as N and location (X, Y )

e(A, B, HopCount ) a directional link from A to B , in which the probe is HopCount-hop.

lost (A, B ) e(A, B, HopCount ) exists but B did not receive A’s probe.

g(A, HopCount ) node A ’s neighbor group with hop count as HopCount .

inGroup (B, g (A, HopCount )) node B is in g(A, HopCount ).
noP robe(A ) node A has not received any probe yet.

distance (A, B, Length ) the physical distance between A and B is Length
lostCount (A, HopCount ) the number of A’s lost probes with hop count as HopCount.

faultyLink (A, B ) Link A → B is detected as a faulty link.

TABLE I
DLP FACTS

potential possiblities, or models in a disjunctive logic program.
In addition, we need to enumerate both the strong constraints
and weak constraints. Each strong constraint only presents
a conjunction of facts, while a weak constraint additionally
assigns a numeric cost to the conjunction. The program will
prune the models which violate any strong constraints, then
rank the remaining models according to the weak constraints
they violate, finally outputs the lowest cost model of inferred
facts generated from the observation facts and inference rules.

The specific DLP implementation we use is DLV [8]. In
DLV, we set the disjunctive inference rules as follows:

fact1 ∨ fact2 ∨ ... ∨ factk : − fact.

In this rule fact should be pre-defined as a possible truth
either input as an observation, or inferred by others. facti(1 ≤
i ≤ k) are disjunctive, which means fact must infer one and
only one of {fact1, fact2, ...factk}. Besides, we can define
a strong constraint as:

: − fact1, fact2, ...factk.

and a weak constraint as:

:∼ fact1, fact2, ...factk. [Weight : Level].

As mentioned above, fact1, fact2, ...factk is a conjunction
of facts. If a model includes a conjunction in a strong
constraint (i.e., violates a strong constraint), it will be removed
from the set of solutions. Weak constraints can be weighted
according to their importance (i.e., the higher the weight, the
more important the constraint). In the presence of weights,
best models minimize the sum of Weight of violated weak
constraints. Level can be used to prioritize weak constraints
but omitted in our program.

D. Probabilistic Reasoning

In order to detect all the potential links even if they haven’t
been used yet, we consider every link, provided the physical
distance of the corresponding two nodes is within effective
communication range. In our expectation, every link should
generate two probe records (i.e., two-way broadcast). If the
collection record mismatches with our expectation, we can
judge that some links must fail to deliver the probes. Due to
the incompleteness and vagueness of information, we should
find some metrics to infer the potential solutions.

1) Data Pre-processing: Raw record data must be con-
verted into observation facts for DLP, including topology
features and probe records. Topology features mainly depict
the node location and link length, thus initialize our expec-
tation collection during flooding. Probe records describe the
observation facts, i.e., for node S and hop count C, how many
probes with hop count C does S receive in the flooding? With
topology knowledge, we can further group the neighbors of S
by hop counts. For example in Fig. 2, we divide the neighbors
of A into three groups. If we find that the probe with hop count
2 is lost, we can say that B fails to send the probe to A due
to some certain reasons. Normally, one group contains more
than one node. For node C, its neighbors A and B are in one
group since the probes from both of them are 2-hop. When
C’s records show that only one 2-hop probe is received, we
can only say that 2-hop group loses one probe but not attribute
to one specific node’s fault.

In the program of DLP, we can refine the facts like what
described in Table I. Based on these facts, we can set the
inference rules to tell some relationships between them:

g(A,HopCount) : − e(B,A,HopCount).

inGroup(B, g(A,HopCount)) : − e(B,A,HopCount).

The first rule tells us that, if there exist two nodes, A
and B, the distance between which is within the commu-
nication range, and the corresponding probe is HopCount-
hop. We should expect that A’s neighbor group with hop
count as HopCount, i.e., g(A,HopCount) must not be
empty. What not described in this rule is that the number of
probes should be equal to the size of this group. The second
rule divides neighbors into groups, narrowing our inference
choices of nodes when some probes are lost. Actually our
program contains many other rules. As we can see, most
of facts should be input by the records, like e(A,B) and
distance(A,B,Length) completely depend on prior topology
knowledge. The noProbe(A) is determined by the collection
records, for checking that whether A’s record exists at the sink
or be implied by others’ records.

What we want to know is the potential facts, inferred by
the observation facts. To be precise, we roughly know how
many probes are lost during the flooding process from the
records. Furthermore, we can even know the losing probe’s
hop count number (i.e., which group of neighbors). What
follows is to infer that which specific neighbor in the group

2013 Proceedings IEEE INFOCOM

2691





6

4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Rate (%)

 False Negative at 20-node scale
 False Positive at 20-node scale
 False Negative at 40-node scale
 False Positive at 40-node scale
 False Negative at 60-node scale
 False Positive at 60-node scale

Fig. 5. Impact of network scale

4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rate (%)

 False Negative at 8-neighbor
 False Positive at 8-neighbor
 False Negative at 10-neighbor
 False Positive at 10-neighbor
 False Negative at 16-neighbor
 False Positive at 16-neighbor

Fig. 6. Impact of network density

False Negative Rate False Postive Rate
0

3

6

9

12

15

R
at

e 
(%

)

 no feedback
 constraint feedback
 fact feedback
 both feedback

Fig. 7. Impact of algorithm feedback

every 9 links which are reported as faulty is normal in fact.
For each node, once it lost one probe, the more neighbors,
the more combinations of solutions in DLV inference model.
Furthermore, a large-scale network may have other problems
like channel collision and routing error. Finally, from this set
of results, LS is also proved to perform reliably under these
three network scales.

B. Network Density

Network density can also significantly change the network
topology. What is more, a dense network should suffer more
channel collision and packet lost due to hidden terminal,
thus may impact the probe flooding process and cover the
real link performance. Here we define a network density in
terms of average neighbor number. As presented in Fig. 6, we
show three densities in a 60-node network. Clearly, when the
network is sparse (i.e., average 8 neighbors), LS can achieve
a false negative rate about 5%, which means there is only one
out of 20 normal links reported by LS is faulty in fact, while
the false positive rate is only 4.8%. Following the network
density increases, each node is expected to receive more
probes with the same hop count number, since its neighbors
are more centralized around itself. In DLV, its corresponding
group has a larger size, hence produces more possibilities once
the number of probes mismatches the group size.

C. DLV Feedback

From the previous two groups of experiments, we can
see that a multiple-node, dense network may bring much
vagueness into our DLV inference model, leading to a biased
fault report. Because DLV generates the optimal inference
result just based on its facts and rules. The facts include
node location, link distance and probe records while the rules
show the inner relationship between the links (detailed in
section II-D). Unlike the previous experiments, we run 100
experiments which are not independent. That is, every fault
report can generate a feedback for the next DLV programs. Our
experiments try three schemes for feedback: weak constraints,
facts, and both. In our implementation, there are four weak
constraints. The feedback of weak constraints optimizes the
cost functions, like importance order and proportions of differ-
ent links in the current network. The feedback of facts are more
straightforward and emphasized, including which part of links
or which specific links are bad, thus guide the program totally

avoid to obey the rules, and eliminate the wrong inferences
by the rules. Figure 7 clearly shows that whatever feedback of
constraints are provided by the fault report, it only produces
little or even no benefits for the following work. By contrast,
feedback of facts concretely increases the diagnosis accuracy.

IV. LARGE-SCALE SIMULATION STUDY

Since the testbeds can only investigate a limited design
space in terms of the network scale and corner cases, we
further conduct a large scale simulation study. In this evalua-
tion, we pay more attention on the importance order of weak
constraints, as well as their respective inner parameters.

A. Simulation Setup

In our simulation, 2000 sensor nodes are randomly deployed
on a 2500m × 2500m map, and the communication range
is 100m, thus the network density is average 10 neighbors
for each node when the nodes are uniformly distributed. We
use the logarithmic distance path loss model [16] to simulate
received signal strength, and the received signal strength Si

can be formulated as:

Si ∝ −10βlog(
di

d0
) +Xi

where β is the signal fading factor and is set to 4 as in [26].
di is the link length while d0 is the reference distance which
is set to 1m. We also add a random noise factor Xi into
our simulation, which follows a 0-mean normal distribution
with variance σ2 where σ is set to 4. A link’s quality is
decided by its received signal strength, an extra random factor
and other manual settings. However, we will emphasize the
inference procedure but not to simulate a complicate scene for
data collection. Compared to real testbed system evaluation,
the results of simulation seems more reasonable on the basis
of network topology. Hence we primarily discuss about the
inference model itself. We will study the impact of importance
order of weak constraints and some individual specific weak
constraints in DLV. For each setup we take 1000 runs.

B. Impact of Importance Order

In our expectation, different orders enable DLV to generate
different solutions. For example, if we pay great attention to
the correlation between link length and link quality, the infer-
ence model will significantly depend on network topology. By

2013 Proceedings IEEE INFOCOM

2693



7

8 16 24 32 40

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

False Negative Rate (%)

 12345
 45123
 54123
 34512

(a) False negative rate in different im-
portance orders of weak constraints.

8 16 24 32 40

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

False Positive Rate (%)

 12345
 45123
 54123
 34512

(b) False positive rate in different im-
portance orders of weak constraints.

4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

False Negative Rate (%)

 10% asymmetric links
 20% asymmetric links
 30% asymmetric links
 40% asymmetric links

(c) False negative rate in different
settings of asymmetric links.

4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

False Positive Rate (%)

 10% asymmetric links
 20% asymmetric links
 30% asymmetric links
 40% asymmetric links

(d) False positive rate in different set-
tings of asymmetric links.

Fig. 8. Simulation Evaluation.

contrast, if we believe that some bad nodes probably exist in
the networks and their self-contained hardware faults definitely
cause their links failures, we may rank this fact the highest.
Otherwise, it does not make sense that we are discussing about
link features and correlations while there are even no links in
the networks.

Figure 8(a), 8(b) describe the LS’s fault report under four
importance orders. We use ”12345” to represent the order
we list in section II-D, then vary the order to ”45123”,
”54123”, and ”34512” in our simulation, in order to verify
our expectation. As we can see, LS achieves a false negative
rate around 10.2% as well as a false positive rate around 9.5%.
Under the order ”45123” and ”34512”, LS fails to accurately
explore some links’ real performance. They both put constraint
4 before constraint 5, 1, and 2. So the inference model mainly
considers about asymmetric links in the network and takes less
concern on some existing bad nodes. What is more, the order
”54123” regards the link length as the most critical factor to
judge a link’s performance, which strongly differs from our
real system observation.

In addition, we try to observe the variations by removing
some weak constraints from the inference model at the be-
ginning. First we remove the weak constraints which empha-
size that most links have a poor performance just because
they are all related to one bad node. Then we remove the
weak constraint which is defined on the basis of observation
about asymmetric links in the network, which implies that
a link probably performs well if its reverse link is good.
We find that the impact of constraint 1 and 2 is so large
(nearly 17% difference). As mentioned above, a sensor node’s
own hardware failure or program error may cause all of its
links even its neighbors’ links destructive. Without these two
constraints in the interference model, DLV fails to utilize the
inner relationship between links and nodes. For example, it
should be seriously challenged if the final fault report says
that only one or two neighbors have received node A’s probe
but node A actually has 20 neighbors around. Constraint 4
also partially impacts the interference in our simulation where
we set about 20% asymmetric links. After all, we expect
to leverage each reasonable observation in link features to
construct the interference model.

C. Impact of Asymmetric Links

In this section, we delve deeply into the parameter settings
in the weak constraint about asymmetric links. In the sim-

5m

5m

Fig. 9. Field Topology. We use grey level to depict the number of neighbors
for each node. Darker the node, more neighbors around the node.

ulation setup, we set 20% asymmetric links in the network.
We respectively initialize DLV’s prior knowledge about asym-
metric links number to 10%, 20%, 30% and 40%, and DLV
potentially regards a link as asymmetric link with a possibility
of this manual prior knowledge. As described in Fig. 8(c)
and 8(d), LS’s accuracy fluctuates when the prior knowledge
mismatches with the ground truth, but keeps relative accurate
average false negative rate and false positive rate. We believe
that this constraint’s low importance more or less eliminates
the impacts because the first three important constraints have
covered its potential conclusive decision, which can be also
explained by the system evaluation on DLV feedback.

V. FIELD STUDY

In section III we evaluate LS under an indoor environment,
discussing how different network topologies impact our infer-
ence results. Then we conduct a large-scale simulation study
to examine LS by adjusting the parameters in the program. In
this section, we deploy a real outdoor system to verify that LS
can be reliably applied to surveillance networks. We deploy
80 sensor nodes in a 75m × 20m forest. As illustrated in Fig.
9, we put the nodes in a 5 × 16 manner, which enables us to
easily locate the nodes and compute the links’ length. Nodes’
transmission power is set as 15 which guarantees each node
has 10 neighbors on average.

A. Implementation
LS incurs memory overhead on RAM and ROM respec-

tively for data and program storage. (i)As mentioned in
section II, every report is usually generated in the form

2013 Proceedings IEEE INFOCOM

2694



9

and then parse the results at the sink to infer the network
status, or conduct the diagnosis process in local areas [12].
Steinder and Sethi [18] apply Belief Network with the bipartite
graph to represent dependencies among links and end to
end connections, then the root causes can be deduced by
conducting inference on the Belief Network.

Besides, most approaches actively design their probes to
fetch desired information for faulty link detection [1], [20],
especially in the managed enterprise WLANs and wireless
mesh networks, where the monitors are easy to deploy. In
[24], A cycle cover was leveraged to monitor network links.
For each cycle, a node is required to monitor the cycle’s per-
formance. [7] develops a non-adaptive fault diagnosis through
a set of probes where all the probes are employed in advance.
The authors in [6] propose a failure detection scheme, in
which monitors are assigned to each optical multiplexing and
transmission section. These approaches usually compute the
probe paths according to different network symptoms, so as
to combine the network topology to infer the link status. For a
large scale sensor network, however, deploying monitors in the
wild not only increases the cost, but also needs to guarantee
sustainable management. Sniffers can be used to collect the
information. Indeed, to use sniffer also needs to take into
account the cost of maintenance and other deployment details
like coverage and timeline accordance.

VII. CONCLUSION

A wireless network often contains a large number of links
which virtually exist in the air, but we can never directly
observe whether they perform well or not. We proposes a novel
and low-cost link scanning scheme LS for faulty link detection.
LS infers all links statuses on the basis of data collection from
a prior probe flooding process, in which we leverage hop count
to reflect node in/out-going link performances. In the inference
model, we use DLP to describe the inner relationship among
the links, and finally output the optimal fault report with some
constraints, which reversely generates a feedback for DLP’s
following computation. We evaluate our algorithm through a
testbed consisting of 60 TelosB sensor motes and an extensive
simulation study, while a real outdoor system is deployed to
verify that LS can be reliably applied to surveillance networks.

ACKNOWLEDGMENT

This work is supported in part by the NSFC Distinguished
Young Scholars Program under Grant No. 61125202, Na-
tional Basic Research Program of China (973) under Grants
No. 2011CB302705 and 2012CB316200, NSFC under Grants
No. 61103187 and 61100236, National High-Tech R&D
Program of China (863) under Grant No. 2011AA010100,
and China Postdoctoral Science Foundation under Grant No.
2011M500330.

REFERENCES

[1] S.S. Ahuja, S. Ramasubramanian, and M.M. Krunz. Single-link failure
detection in all-optical networks using monitoring cycles and paths.
IEEE/ACM Transactions on Networking, 17(4):1080–1093, 2009.

[2] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo.
Declarative tracepoints: a programmable and application independent
debugging system for wireless sensor networks. In Proceedings of ACM
SenSys, Raleigh, NC, USA, 2008.

[3] A. Cerpa, J.L. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical
model of lossy links in wireless sensor networks. In Proceedings of
IEEE IPSN, UCLA, Los Angeles, California, USA, 2005.

[4] H. Chang et al. Spinning beacons for precise indoor localization. In
Proceedings of ACM SenSys, Raleigh, NC, USA, 2008.

[5] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin. Emstar: a software environment for developing and deploying
wireless sensor networks. In Proceedings of the USENIX Annual
Technical Conference, Boston, MA, USA, 2004.

[6] Y. Hamazumi, M. Koga, K. Kawai, H. Ichino, and K. Sato. Optical
path fault management in layered networks. In Proceedings of IEEE
GlobeCom, Sydney, Australia, 1998.

[7] N.J.A. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V.W.S. Chan.
Non-adaptive fault diagnosis for all-optical networks via combinatorial
group testing on graphs. In Proceedings of IEEE INFOCOM, Anchorage,
Alaska, USA, 2007.

[8] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic, 7(3):499–562,
2006.

[9] Z. Li, Y. Liu, M. Li, J. Wang, and Z. Cao. Exploiting ubiquitous
data collection for mobile users in wireless sensor networks. IEEE
Transactions on Parallel and Distributed Systems, 24(2):312–326, 2013.

[10] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, L. Mo, W. Dong, Z. Yang, M. Xi,
J. Zhao, et al. Does wireless sensor network scale? a measurement study
on greenorbs. In Proceedings of IEEE INFOCOM, Shanghai, China,
2011.

[11] Y. Liu, K. Liu, and M. Li. Passive diagnosis for wireless sensor
networks. IEEE/ACM Transactions on Networking, 18(4):1132–1144,
2010.

[12] Q. Ma, K. Liu, X. Miao, and Y. Liu. Sherlock is around: Detecting
network failures with local evidence fusion. In Proceedings of IEEE
INFOCOM, Orlando, FL, USA, 2012.

[13] E. Magistretti, O. Gurewitz, and E. Knightly. Inferring and mitigating
a link’s hindering transmissions in managed 802.11 wireless networks.
In Proceedings of ACM MobiCom, Chicago, Illinois, USA, 2010.

[14] L. Mo, Y. He, Y. Liu, J. Zhao, S.J. Tang, X.Y. Li, and G. Dai. Canopy
closure estimates with greenorbs: Sustainable sensing in the forest. In
Proceedings of ACM SenSys, Berkeley, California, USA, 2009.

[15] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin.
Sympathy for the sensor network debugger. In Proceedings of ACM
SenSys, San Diego, USA, 2005.

[16] T.S. Rappaport et al. Wireless communications: principles and practice,
volume 207. Prentice Hall PTR New Jersey, 1996.

[17] D. Son, B. Krishnamachari, and J. Heidemann. Experimental analysis
of concurrent packet transmissions in low-power wireless networks. In
Proceedings of ACM SenSys, San Diego, USA, 2005.

[18] M. Steinder and A.S. Sethi. Probabilistic fault localization in commu-
nication systems using belief networks. IEEE/ACM Transactions on
Networking, 12(5):809–822, 2004.

[19] I. Stojmenovic and X. Lin. Loop-free hybrid single-path flooding
routing algorithms with guaranteed delivery for wireless networks. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1023–1032,
2001.

[20] Y. Wen, V.W.S. Chan, and L. Zheng. Efficient fault-diagnosis algorithms
for all-optical WDM networks with probabilistic link failures. Journal
of Lightwave Technology, 23(10):3358, 2005.

[21] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In Proceedings of ACM
SenSys, Los Angeles, CA, USA, 2003.

[22] J. Yang, M.L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a
comprehensive source-level debugger for wireless sensor networks. In
Proceedings of ACM SenSys, Sydney, Australia, 2007.

[23] K. Yedavalli and B. Krishnamachari. Sequence-based localization in
wireless sensor networks. IEEE Transactions on Mobile Computing,
7(1):1–14, 2008.

[24] H. Zeng, C. Huang, and A. Vukovic. Monitoring cycles for fault
detection in meshed all-optical networks. In International Conference
on Parallel Processing Workshop, Montreal, Quebec, Canada, 2004.

[25] Q. Zheng and G. Cao. Minimizing probing cost and achieving identifi-
ability in probe based network link monitoring. IEEE Transactions on
Computers, 2011.

[26] Z. Zhong, T. Zhu, D. Wang, and T. He. Tracking with unreliable node
sequences. In Proceedings of IEEE INFOCOM, Rio de Janeiro, Brazil,
2009.

2013 Proceedings IEEE INFOCOM

2696



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


