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Abstract—Large-scale data centers are the key infrastructures
for hosting and running a variety of applications. Besides
traditional L2/L3 devices, middleboxes are widely deployed in
data centers and perform many important functions, e.g., the
intrusion detection and firewall. Middleboxes are equipped with
multiple kinds of resources, such as CPU and memory. Data flows
undergoing different functions have heterogeneous processing
time requirements on diverse resources. Researches are in a
dilemma as to how to provide fair service for flows and efficiently
utilize those scarce resources. To address this problem, we
propose a novel packet scheduling method, ATFQ (active time
fairness queueing), for multi-resource environments. Prior packet
scheduling methods usually focus on pursuing the fairness among
flows, resulting in enormous waste of those scarce resources.
ATFQ overcomes this essential by redefining the fairness and can
maximize the resource utilization with the guarantee of fairness.
We conduct extensive simulations to evaluate the performance of
ATFQ. The evaluation results demonstrate that flows get better
service in many aspects under ATFQ. Meanwhile, the resource
utilization rises up by about 10% than the traditional DRFQ,
which is one of the mainstream involved methods.

Index Terms—Multi-resource, packet processing, fair schedul-
ing, efficiency I. INTRODUCTION

With the growth of scale and the enhancement of function-
ality, data centers accommodate more and more applications.
Data centers are the key infrastructures and provide reliable
service for these applications. Besides traditional L2/L3 de-
vices, such as routers and switches, middleboxes are widely
deployed in data centers [1][2]. Traditional network devices
are only responsible for the basic routing and forwarding.
The major advantage introduced by middleboxes is that they
perform many data processing functions, e.g., intrusion detec-
tion, network address translation and firewall. To some degree,
middleboxes alleviate the pressure of servers and optimize the
network environment for data centers.

Middleboxes are usually equipped with multiple kinds of
resources, e.g., CPU, memory and link bandwidth, which
are multiplexed by flows passing through them. Performing
different functions induces distinct consumptions on those
resources. For example, the intrusion detection performs the
deep analysis on the content of packets. Hence, it bottlenecks
on the CPU. If flows just need to be forwarded, the link
bandwidth becomes the bottleneck. What’s more, processing
large amount of small packets bottlenecks on the memory
bandwidth in software routers [3]. The amount of resources at
a middlebox is very scarce, compared to that at a server. Due
to the huge volume of traffic passing through middleboxes ,
how to provide fair service for these data flows and efficiently
utilize the middlebox resources becomes a serious challenge
for a packet scheduling method.
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(a) Strict DRFQ leads to the loss of efficiency.
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(b) Relax DRFQ to improve the efficiency.

Fig. 1. Improve the efficiency by relaxing the constraint of fairness.

In the setting of a single resource environment, traditional
packet scheduling methods focus only on providing fair service
for flows or shortening the flow completion time. They, how-
ever, concern nothing about the resource utilization. Actually,
the resource will be fully utilized if such methods satisfy the
work conservation, i.e., the resource should not be wasted in
idle state when there exist packets needing to be processed.
Similarly, in a multi-resource environment, work conservation
can be defined as that at least one resource is fully utilized
when there exist packets that have not yet been processed.
However, different from the single resource environment,
packet scheduling methods satisfying this definition exhibit
different levels of resources utilizations in a multi-resource
environment. To ease the presentation, we use Fig. 1 as
an example. Here we assume there are only two kinds of
resources, i.e., the CPU and the link, in the system and they
are multiplexed by flow U and flow V . Each packet of flow U ,
denoted by u1, u2, . . ., needs 4 time units respectively on the
CPU and the link. Meanwhile, each packet of flow V , denoted
by v1, v2, . . ., needs 2 time units on the CPU and 1 time unit
on the link.

DRFQ is a timestamp based scheduling method and gen-
eralizes the max-min fairness into a multi-resource environ-
ment. As in DRFQ [4], different flows should receive equal
processing time on their respective dominant resources. The
dominant resource of a flow indicates the resource with the
largest processing time for that flow among all the resources.
In this way, such two flows will enter a scheduling cycle,
where one packet of flow U will be processed after every two
packets of flow V , as illustrated in Fig. 1(a). In the long term,
the utilizations of the CPU and the link are 80% and 60%,
respectively. Obviously, resources are wasted in idle state for a
long time while maintaining the max-min fairness. Taking the
resource utilization into consideration, we can loosen the con-
straint of the fairness a little bit and equalize different flows’



processing time on their respective dominant resources in a
relaxed way. For example, continuously schedule 4 packets of
flow V after 2 sequential packets of flow U , as illustrated in
Fig. 1(b). In this way, the utilizations of the CPU and the link
rise up to 88.9% and 66.7%, respectively. Accordingly, we can
reasonably conclude that work conservation cannot guarantee
a high resource utilization in a multi-resource environment.
What’s more, strictly pursuing the fairness among flows always
leads to serious waste of resources.

In a multi-resource environment, the resource utilization
influences the quality of service for flows in many aspects.
Higher resource utilization means that more packets or flows
can be processed within the same time interval, compared to a
scheduling scenario of low resource utilization. Accordingly,
each flow will get a shorter completion time, which is usually
the main concern for flows. So, besides the fairness, the
resource utilization is another essential metric for evaluating
the performance of the scheduling method, especially in a
multi-resource environment. Prior packet scheduling methods
in a multi-resource environment, e.g., DRFQ [4], DRGPS [5]
and MR3 [6], only strive to provide fair service for flows, but
all of them suffer considerable loss of the resource utilization.
As illustrated in Fig. 1(b), it’s feasible for a packet scheduling
method to achieve high resource utilization while providing
fair service for flows.

However, it’s a challenge to achieve the fairness among
flows and high resource utilization simultaneously. Differ-
ent from traditional packet scheduling methods in a single-
resource environment, the definition of fairness is still am-
biguous in a multi-resource environment, not to mention
how to promote the resource utilization. In this paper, we
propose ATFQ (active time fairness queueing), a novel packet
scheduling method that takes the fairness and the resource
utilization as the joint scheduling goal. For avoiding the draw-
back of DRFQ, we redefine the fairness in a multi-resource
environment as ATF (active time fairness) to provide fair
service for flows. Meanwhile, by using an efficient scheduling
algorithm, we can maximize the resource utilization with the
guarantee of the fairness. We conduct extensive evaluations to
verify the performance of our proposal. The evaluation results
demonstrate that ATFQ ensures the fairness among flows and
considerably improves the utilizations of all kinds of resources.
Consequently, flows achieve better service in many aspects
under ATFQ, compared to other scheduling methods that only
focus on providing fair service isolation for flows.

The main contributions of this paper are summarized as
follows:

1) For avoiding the drawback of DRFQ, we redefine the
fairness as ATF to ensure fair service for flows in a
multi-resource environment.

2) Besides the fairness, we integrate the resource utiliza-
tion into the scheduling objective and design a packet
scheduling algorithm to maximize the resource utiliza-
tion in a multi-resource environment.

3) We explore the tradeoff between the fairness and the
promotion of the resource utilization. Relaxing the con-

straint of the fairness a little bit can increases the
resource utilization by different degrees.

4) We conduct extensive evaluations to verify the promo-
tion for flows in many aspects, benefiting from high
resource utilization.

The rest of this paper is organized as follows. In Section
II we discuss the properties and drawbacks of prior packet
scheduling methods. Section III presents a new definition of
fairness to ensure fair service for flows in a multi-resource
environment. Section IV designs an efficient packet scheduling
algorithm to maximize the resource utilization. In Section V,
we conduct extensive evaluations to verify the performance of
ATFQ. Finally Section VI concludes our work.

II. PRELIMINARIES

We start with some packet scheduling methods for a single
resource and multiple resources respectively. We then discuss
the importance of the resource utilization.

A. Packet scheduling for a single resource

In the network field, packet scheduling is always an im-
portant problem and attracts lots of attentions. Traditional
scheduling methods are designed for a single resource, e.g., the
link bandwidth and the buffer queue. Such methods are usually
designed for specified objectives and can be correspondingly
categorized into three families.

1) Fairness oriented. Flows should be treated equally when
multiplexing the resource. Fairness based scheduling methods
strive to make fair service isolation for flows, according to the
specified definition of the fairness, e.g., the max-min fairness
and the proportionate fairness [7]. Flow processing time or
received service time is usually taken as a metric to decide the
scheduling opportunity for packets. Traditionally, data packet
is processed as an entirety and one resource can only process
one packet at a time. Scheduling packets in any sequence
will inevitably lead to a service difference among flows. GPS
(generalized processor sharing) [8] has been proposed to elim-
inate this difference by assuming that packets can be divided
infinitely and the resource can be simultaneously multiplexed
by multiple packets. GPS can be seen as a benchmark and
a lot of scheduling methods try to approximate it, e.g., FQ
(fair queueing) and WFQ (weighted fair queueing) [9]. WF2Q
(worst-case fair weighted fair queueing) [10], SCFQ (self-
clocked fair queueing) [11] and SFQ (start-time fair queueing)
[12] refine the performance of FQ in some special scheduling
scenarios.

2) Focusing on the flow completion time. How to finish
the flow transmission quickly is always a difficult problem
in a complex network environment. DCTCP [13] leverages
ECN (explicit congestion notification) to maintain high flow
transmission rate, so as to finish the transmission as soon
as possible. Literatures [14][15][16] adopt RCP (rate con-
trol protocol) to shorten the flow completion time. RCP
implements processor-sharing and allocate the same rate for
flows passing through the switch. Detail [17] focuses on the
long-tailed flow completion time and eliminates this issue



by prioritizing latency-sensitive flows. PDQ[18] implements
EDF in the whole network to achieve this objective. The
unbalanced distribution of network load also disturbs the flow
transmission. Literatures [19][20] adopt MPTCP to alleviate
this unbalance, i.e., transferring the flows from congested links
to non-congested ones.

3) Deadline guarantee. As for soft real-time applications,
e.g., web search, completing the flow transmission before the
deadline is their main concern. Deadline-missing flows are
invalid and will not be added into the final response. For
satisfying the flows’ deadline requirements, more detailed flow
information, e.g., the flow size and the deadline, are needed
when making scheduling decisions. D2TCP [21] and D3 [22]
all prefer to flows with urgent deadlines, so as to satisfy their
deadline requirements as many as possible.

B. Packet scheduling for multiple resources

The flow scheduling problem in a multi-resource environ-
ment can also be seen as a resource allocation problem in time
domain. However, the concept of fairness is ambiguous in a
multi-resource environment. Simply, we can extend the related
definitions of fairness in a single resource environment to a
multi-resource environment. Equally partitioning all resources
is the simplest manner. Bottleneck fairness [4] allocates the
most required resource equally to users. For the asset fairness,
different resources can interchange with each other and each
user will finally get the same worth of resources. Recently, a
resource allocation scheme, DRF (dominant resource fairness)
[23], generalizes the concept of max-min fairness into a multi-
resource environment. In the setting of DRF, each user gets the
same proportion of its dominant resource, which indicates the
resource with the maximal proportion of occupancy among all
resources. DRF possesses many attractive properties and some
corresponding packet scheduling methods have been proposed,
e.g., DRFQ [4], MR3 [6], GMR3 [24] and DRGPS [5], to
realize it.

Resorting to the fluid model, where packets can be infinitely
divided, DRFQ equalizes different flows’ processing time on
their respective dominant resources. DRFQ is a timestam-
p based scheduling method and needs a large amount of
computation before making scheduling decision. For lowering
down the implementation complexity of DRFQ, MR3 uses a
round robin algorithm to achieve DRF and makes schedul-
ing decision in O(1). Flows with higher priorities, however,
experience longer inter-packet delay. GMR3 [24] has been
proposed to overcome the drawback of MR3 by using a
group scheme. DRGPS generalizes the concept of GPS into
a multi-resource environment and realizes the strict DRF for
flows. Unfortunately, for achieving the strict fairness, these
scheduling methods all suffer considerable loss of the resource
utilization.

C. Packet scheduling with fairness and efficiency

As for the packet scheduling problem, the most impor-
tant difference between a single resource environment and
a multi-resource environment is the resource utilization. For

a single resource, it will be fully utilized if it keeps on
processing packets. In a multi-resource environment, such as
middleboxes, work conservation cannot ensure high resource
utilization. Resources should be efficiently utilized to provide
better service for flows. With high resource utilization, more
flows can be processed within the same time interval and flows
will be finished faster. Thus, besides the fairness, the resource
utilization should also be taken as an important scheduling
objective. Although literature [25] notices the tradeoff between
fairness and efficiency in a multi-resource environment, the
existing packet scheduling methods focus only on the fairness
and neglect the importance of the resource utilization.

The resource utilization can be seen as a metric for e-
valuating the efficiency of a scheduling method. Generally,
the fairness and the efficiency appear to be at odds. Re-
alizing the strict fairness always means more fine-grained
control. Conversely, more control overhead will lower down
the scheduling efficiency. It’s not a trivial job to make the
best of both worlds. In this paper, we try to achieve high
resource utilization with the guarantee of fairness for flows.
We design a new measurement of fairness to make service
isolation for flows. Meanwhile, our scheduling algorithm can
maximize the resource utilization. Benefiting from this, flows
get better service in many aspects, including the completion
time and the inter-packet delay.

III. THE SCHEDULE MOTIVATION

We start with the new concept of the active time fairness.
Then we propose the methods to measure the active time and
the efficiency, respectively. Finally, we discuss how to improve
the efficiency while ensuring the fairness.

A. Active time fairness

Before further discussion, we need to clarify the meaning
of the fairness for the packet scheduling problem in a multi-
resource environment. Inspired by DRF [23], we present some
attractive properties that should be satisfied by fairness driven
packet scheduling methods as follows:

1) Fair rate isolation: when n flows share the multiple
resources, the rate of each flow should be 1

n of α, where
α is the rate when it monopolizes all the resources.

2) Inter-packet delay : as for a flow, the start time of its
adjacent packets should be bounded within an acceptable
range.

3) The difference of flows’ received service time: the differ-
ence of flows’ received service time should be bounded
within an acceptable range.

4) Strategy-proofness: flows cannot get more service time
by lying about their required processing time on re-
sources.

5) Starvation-proofness: flows should not wait for a very
long time before being processed.

DRFQ generalizes the DRF into the packet scheduling prob-
lem in a multi-resource environment. It takes flows’ processing
time on their respective dominant resources as the indicator
of their received service time. DRFQ is a timestamp based
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Fig. 2. Shift of the dominant resource.

scheduling method and follows the principle of the max-min
fairness when making scheduling decisions. However, as for
a flow, the sizes of its packets are changeable. This leads to
instable processing time requirements on diverse resources.
Consequently, the dominant resource for a flow may shift from
one resource to another. We interpret this phenomenon in Fig.
2.

At the beginning, flow W sends 5 packets, w1-w5, and each
packet requires 2 time units on the CPU and 1 time unit on
the link. Then it sends 6 packets, w6-w11, and each packet
requires 1 time unit on the CPU and 2 time units on the link.
Obviously, the dominant resource gradually shifts from the
CPU to the link. Before the completion of the shift, the CPU
is still the dominant resource and the sum of processing time
on the CPU will increase slowly. That is, its packets will get
smaller timestamps than usual, where the dominant resource
does not shift. Consequently, flow W gets more scheduling
opportunities than other flows. This phenomenon deteriorates
seriously when it has extremely different processing time on
diverse resources. Consequently, other flows may be starved
before the completion of the flow, whose dominant resource
changes. For avoiding this drawback of DRFQ, we redefine
the fairness in a multi-resource environment as the active time
fairness. Before that, we introduce the concept of the active
time.

Definition 1 (Active Time): As for a flow, the active time is
the time interval from the beginning of using the first resource
to the release of the last resource when it monopolizes all the
resources.

The active time records the flow’s processing procedure, so
we can reasonably take the active time as a flow’s received
service time. As for a flow, the difference between the pro-
cessing time on its dominant resource and the active time can
be distinguished, as shown in Fig. 2. If taking the active time
as the timestamp of packet, the subsequent packets will not get
smaller timestamp. Obviously, the active time changes steadily
and is immune to the shift of dominant resource. According
to Definition 1, we define the active time fairness in a multi-
resource environment as follows.

Definition 2 (Active Time Fairness): Each flow should
receive the equal active time when sharing all the resources
with other flows.

ATF gets inspiration from the virtual clock [26] and gen-
eralizes its concept into a multi-resource environment for the
packet scheduling problem.
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Fig. 3. Packet processing procedure.

B. Measurement of the active time

Realizing the ATF for flows needs precise measuremen-
t on the active time. However, the setting of the multi-
resource extremely complicates the measurement. Each packet
experiences multiple processing phases on different resources
and has different processing time on them. For making the
measurement precise, we model and formalize the packet
processing procedure, as illustrated in Fig. 3. Assume there are
m kinds of resources, denoted by R1, R2, ..., and Rm, which
are numbered according to the packet processing procedure.
The same color graph indicates the sequential packet pro-
cessing phases on different resources. In summary, the packet
processing procedure obeys the following rules:

1) One resource can only process one packet at any time.
2) One packet can be processed on only one resource at

any time.
3) All packets should be processed in the same resource

sequence.
4) The processing of a packet cannot be interrupted before

its completion on all the resources.

The first and second rules make sense in most situations,
except for some special resources that can process multiple
packets simultaneously, e.g., the multi-core CPU. This beyond
the scope of this article and will not be taken into consid-
eration. As for the third rule, the packet processing follows
a fixed sequence on all the resources and this processing
sequence cannot be disturbed arbitrarily. That is, packets need
to be processed on the CPU before transmitting it on the link.
Buffers, if any, between adjacent resources can temporarily
store the packets but interrupt the packet processing procedure.
So rule 4 results from the assumption that there exist no
buffers. Before moving forward, Table I summarizes some
necessary notations. As for a backlogged flow fi, its sending
rate exceeds the processing rate of the system. So, packet pk+1

i

arrives before the completion of packet pki on the first resource.

TABLE I
NOTATIONS USED FOR TIMESTAMP COMPUTATION.

Notation Explanation
m the number of the resources
ai the arrival time of flow fi
pki the k-th packet of flow fi
L(pki , j) the processing time of pki on resource j
S(pki , j) the start time of pki on resource j
F (pki , j) the finish time of pki on resource j



When flow fi monopolizes all the resources, the start and
finish time of its packets on all the resources can be got.

According to the definition of the active time, we take
F (pki ,m) as an indicator of the active time for flow fi when
pki has been completely processed on all of the resources.
Suppose that pki is the first packet of flow fi, which newly
arrives or just recovers from idle to busy. For synchronizing
the processing of flow fi with other flows that have already
been scheduled, the timestamp of pki needs to be mapped as
an appropriate value. Actually, there are many ways to realize
this mapping operation. For making the newly arrived flows be
scheduled as soon as possible, we set F (pki ,m) as the maximal
finish time in the set of packets being processed at ai, denote
by Q(ai). Let q denote any packet belonging to Q(ai), the
mapping operation can be formalized as:

F (pki ,m) =

{
max

q∈Q(ai)
F (q,m) Q(ai) 6= φ

0 Q(ai) = φ
(1)

According to the forth rule aforementioned, the packet will
be pushed to the next resource immediately after finishing its
processing on the current resource. So, the start time of pki on
the first resource can be calculated as:

S(pki , 1) = F (pki ,m)−
m∑
b=1

L(pki , b). (2)

As for the subsequent packets of pki , we get the start time
of pk+1

i on the first resource as:

S(pk+1
i , 1) = S(pki , 1) + L(pki , 1)

+ max
n

(

n∑
j=2

L(pki , j)−
n−1∑
j=1

L(pk+1
i , j), 0),

(3)

where 2 ≤ n ≤ m. The start time of pk+1
i on the other

resources can be deduced as:

S(pk+1
i , n) = F (pk+1

i , n− 1)

= S(pk+1
i , n− 1) + L(pk+1

i , n− 1).
(4)

Finally, the finish time of pk+1
i on the final resource can be

got as:

F (pk+1
i ,m) = S(pk+1

i ,m) + L(pk+1
i ,m). (5)

Although flows multiplex all the resources with each other,
their timestamp computations are conducted respectively, so
as to achieve the ATF.

C. Measurement of the efficiency

For a single resource, higher resource utilization means
flows can be processed faster and more flows can be processed
within the same time interval. Makespan, i.e., the total pro-
cessing time, is usually taken as the metric for measuring the
efficiency of a scheduling method. A scheduling method with
high efficiency will sufficiently utilize the resources to process
flows quickly. So the efficiency of the scheduling method is
equivalent to the resource utilization in most scenarios. In a

multi-resource environment, two metrics can be adopted to
measure the efficiency of a scheduling method:

1) The sum of flows’ processing time on their respective
dominant resources.

2) The total processing time interval for flows.
The first metric partially emphasizes the importance of

the processing time on the dominant resource, violating the
definition of the ATF. In addition, if we neglect the concrete
packet processing on the multiple resources and see these
resources as whole, higher resource utilization still lead to
shorter completion time for flows. Obviously, the second
metric is a more direct representation for the efficiency. So
in this paper, we take the second metric as the definition of
the efficiency. So far we have defined the measurements of the
fairness and efficiency. The challenge turns out to be how to
achieve them simultaneously. This is also the main concern of
this paper.

D. Achieving the fairness and efficiency simultaneously

Recall that DRFQ is a fairness driven scheduling method
and focuses only on providing fair service isolation for flows.
It realizes the max-min fairness, so as to restrict the differ-
ence of flows’ processing time on their respective dominant
resources within the minimal range. This outcome results from
pursuing the strict fairness for flows. We can achieve the
strict ATF for flows by always scheduling the packet with the
smallest finish time, i.e., the flow with the smallest active time.
But as aforementioned, this will lead to considerable waste of
the resources, which in turn influences the quality of service
for flows. The constraint of the fairness is not competent in
a multi-resource environment. So, we introduce the concept
of the time domain, so as to realize the ATF for flows in a
relaxed manner and improve the efficiency simultaneously.

A time domain, denoted by [T1, T2) for T1 < T2, can be
seen as a relatively longer time interval, compared to the pack-
et processing time. According to the definition of the active
time, the scheduler makes timestamp computation respectively
for each flow with the assumption that it monopolizes all the
resources. The packets within [T1, T2), i.e., their finish times
are no less than T1 and less than T2, will be processed in the
same scheduling loop. The next scheduling loop will not start
until all the packets in the current scheduling loop have been
completely processed. The packets belonging to different flows
have heterogeneous requirements of the processing time on
diverse resources. To obey the constraint of the time domain,
flows differ in the number of packets being processed in each
scheduling loop. So in every scheduling loop, flows receive
roughly the same active time. In the long term, flows get the
equal active time and the ATF can be achieved.

For improving the efficiency of the scheduling method, all
the resources should be sufficiently utilized to process flows
quickly. However, flows arrive frequently and their arrivals
cannot be predicted. Maximizing the efficiency of the schedul-
ing method in a global way is unrealistic. Consequently, we
focus on the total processing time interval for all the packets
in the same scheduling loop and minimize it by adopting an



efficient scheduling algorithm. The scheduling algorithm will
be explained in Section IV-B.

IV. THE DESIGN AND IMPLEMENTATION OF ATFQ

We start with the design rationales of ATFQ and then
present the efficient scheduling algorithm. We finally explore
the properties of ATFQ in detail.

A. The design rationales of ATFQ

ATFQ is not a scheduling method only focusing on provid-
ing fair service for flows. Besides the fairness, it also takes
the efficiency as the scheduling objective. ATFQ does not
pursue the strict fairness for flows, where the difference of
received service time of flows can be bounded within the
minimal range. In ATFQ, the fairness among flows will be
achieved in a relaxed way and the efficiency can be maximized
simultaneously by adopting the time domain. Packets obeying
the constraint of the time domain will be processed in the same
scheduling loop. Although different flows receive roughly the
same active time in every scheduling loop, in the long term,
there will be an equivalent on flows’ active time.

As for each scheduling loop, we use a scheduling algorithm
to minimize the total processing time interval for packets in
each time domain. To ease the presentation, we illustrate the
scheduling loops in Fig. 4. The same color graphs indicate the
packets belonging to the same scheduling loop. Although we
can minimize the total processing time intervals for scheduling
loop 1 and scheduling loop 2 respectively, the two time
intervals overlap when processing packet pN+1 on the first
resource. In addition, there may exist a time gap between the
packets on their boundary, i.e., packets pN and pN+1. Here the
time gap refers to the idle time between the adjacent packets
on the first resource. So, scheduling loops are not independent
with each other. The selection of packet pN+1 should take
into account of the final scheduled packet in the previous
scheduling loop, i.e., packet pN . The first resource will be
wasted to some extent if neglecting the time gap between
adjacent scheduling loops. To avoid this drawback, we need
to redefine the scheduling objective for every scheduling loop.

For N packets, p1, ..., and pN , in the scheduling loop 1, their
processing time on the first resource, L(pi, 1) for 1 ≤ i ≤ N ,
cannot be changed. However, the sum of the time gap between
these packets is a variable associating with the specified packet
scheduling sequence. Let G(pi) denote the time gap between
packets pi and pi−1. For a given packet scheduling sequence
in scheduling loop 1, we define E as:

E =

N∑
i=1

(L(pi, 1) +G(pi)). (6)

Based on this definition, the value of E measures the packet
processing time interval on the first resource for the packets
belonging to the same scheduling loop. Note that it includes
the time gap after the last packet scheduled in the previous
scheduling loop, but not the time gap after the last packet
scheduled in the current scheduling loop. Obviously, as for
different scheduling loops, the computations of E have no
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Fig. 4. Scheduling loops.

overlap on time. So they perfectly divide the packet scheduling
procedure in logic. By doing this, each scheduling loop can
compute its value of E and try the best to minimize it,
respectively.

As aforementioned, the processing procedure of a pack-
et cannot be interrupted before it passing through the last
resource. If the packets belonging to the same scheduling
loop can be completely processed within the minimal time
interval on the first resource and their number is large enough,
the makespan also approximates to the its minimum. Here
we follow this observation and take E as the representation
of the makespan. It is reasonable and efficient, as verified
in our performance evaluations. Consequently, we design a
scheduling algorithm to minimize E for every scheduling loop,
so as to maximize the efficiency.

B. Efficient scheduling algorithm

According to the proposed packet processing model, when
the number of resources is more than two, minimizing the total
processing time interval for packets in one scheduling loop is
a NP-hard problem. Approximate solutions can be got through
some heuristic algorithms. In this paper, we only consider
the scheduling scenario of two resources, where the optimal
solution can be achieved. As an exception, assume there are
m kinds of resources and N packets will be processed in one
scheduling loop. In addition, the packet scheduling sequence
with the minimal E is given. Now we add a new resource as
the final resource and assume the maximal packet processing
time on the (m + 1)-th resource is smaller than the minimal
packet processing time on the m-th resource. Based on these
assumptions, we get:

m+1∑
j=2

L(pi, j)−
m∑
j=1

L(pi+1, j)

= L(pi,m+ 1)− L(pi+1,m)

+

m∑
j=2

L(pi, j)−
m−1∑
j=1

L(pi+1, j)

≤
m∑
j=2

L(pi, j)−
m−1∑
j=1

L(pi+1, j).

(7)

Following this conclusion, we split Eq. 3 and get:



max
t

(

t∑
j=2

L(pi, j)−
t−1∑
j=1

L(pi+1, j), 0)

= max{max
n

(

n∑
j=2

L(pi, j)−
n−1∑
j=1

L(pi+1, j), 0),

(max(

m+1∑
j=2

L(pi, j)−
m∑
j=1

L(pi+1, j), 0))}

= max
n

(

n∑
j=2

L(pi, j)−
n−1∑
j=1

L(pi+1, j), 0).

(8)

Here 2 ≤ t ≤ m+ 1, 2 ≤ n ≤ m, pi and pi+1 are adjacent
packets in the given packet scheduling sequence. We get
the conclusion from Eq. 3 and Eq. 8 that the addition of
the (m + 1)-th resource does not influence the start time
of each packet. In this setting, the given packet scheduling
sequence possesses the minimal E even in a (m + 1)-resource
environment. Actually in middleboxes, packets will be put into
memory after being processed on the CPU, then, they will be
transferred to the link. With highly sufficient link bandwidth,
the packet processing time on the link will be the smallest
among all the resources. So the link will not be the bottleneck.
Under this setting, our efficient scheduling algorithm is also
the optimal in a three-resource environment, which is the
actual situation in middleboxes.

For getting the minimal E in each scheduling loop, we adopt
the algorithm [27] proposed by Gilmore and Gomory, which
is originally proposed in the field of operation research. We
first generalize it as the packet scheduling problem in a multi-
resource environment. Algorithm 1 describes the details of the
scheduling algorithm.

As for this algorithm, the packet scheduling sequence
P = < p1,p2, · · · ,pN+1 > contains all of the N packets in
the same scheduling loop and these packets can be arranged
randomly at the beginning. Each pi ∈ P associates with two
values, Ai and Bi, which denote its processing time on the
first and second resources, respectively. In addition, a virtual
packet pN+1 will be added into P . AN+1 and BN+1will be
set as:

AN+1 = max
1≤i≤N

Bi,

BN+1 =
{ BN ′

0

(9)

where pN ′ is the last packet scheduled in the previous schedul-
ing loop and BN ′ is the processing time of pN ′ on the
second resource. In the first scheduling loop, BN+1 will be
set as 0. The introduced virtual packet only takes part in the
computation, but will never be processed in actual.

In step 4, n is the subscript of the packet in P and An

is the m-th smallest processing time on the first resource. By
doing this, each pm∈ P gets an original successor, i.e., the next
packet to be processed after it. ϕ(m) indicates the subscript

of the original successor of pm. Consequently, some packet
subsequences arise and they are independent with each other.
The cost array C indicates the cost for combining two packet
subsequences together and can be got from step 7 to step 11.
At step 14, two packet subsequences are combined together
by exchanging the successors of pi and pi+1. By picking out
the minimal ci in every iteration, we combine all the packet
subsequences together with the minimal cost. After combining
all the packet subsequences together, the original successors
of packets need to be adjusted through the formula described
at step 24, so as to get the final successors for them. Here the
operation of Xa,b(z) is defined as:

Xa,b(z) =

 a z = b
b z = a
z z 6= a or b

(10)

The subscript of pm’s successor can be got as ψ(m) by
applying Xa,b(z) from right to left to ϕ(m). All the successors
of packets in P can be got in the same way. The scheduling
algorithm combines all the packet subsequences together,
consequently we achieve the packet scheduling sequence with
the minimal E. The successor of the virtual packet will be
processed first in the current scheduling loop and other packets
will be processed sequentially.

C. Analysis about the properties of ATFQ

ATFQ pursues high efficiency with the guarantee of the
fairness. We analyze its emphasis on the fairness and the
tradeoff between the fairness and the efficiency in Section
IV-C1 and Section IV-C2, respectively. The promotion of the
efficiency depends on the specified scheduling scenario, so the
corresponding analysis on the efficiency will be deferred in our
performance evaluation.

1) ATFQ’s emphasis on the fairness: The ATF and the time
domain bring ATFQ the following attractive properties, which
are essential for the packet scheduling methods as mentioned
in Section III-A.

1) All flows obtain the same proportion of their antic-
ipated rates. Assume that a given set of packets, belonging
to different flows, obey the time domain [T1, T2). The total
packet size of flow fi can be denoted by SPi. If flow fi
monopolizes all the resources, its average data rate in the time
domain can be expressed as:

ri =
SPi

T2− T1
, (11)

where ri can be seen as the anticipated data rate for flow fi.
When flows share the multiple resources with each other, their
anticipated data rate cannot be achieved concurrently. Let T
denote the makespan for processing all the given packets under
any scheduling method. Obviously, T is larger than (T2−T1)
in most cases. Thus, the actual average rate of flow fi can be
expressed as:

r′i =
SPi

T
. (12)



Algorithm 1 Efficient Scheduling Algorithm
Require: P =< p1, p2, · · · , pN+1 >: the packet scheduling

sequence; Ai: the packet processing time of pi on the
first resource; Bi: the packet processing time of pi on the
second resource; C = {c1, c2, · · · , cN}: the cost array;
subsequenceN=0: the number of packet subsequences;
R: number set; S and T : two number sequences.

1: Arrange and renumber the packets in P according to the
value of Bi, so that in the new scheduling sequence, Bi ≤
Bi+1, and i = 1, 2, . . . , N ;

2: Arrange the value of Ai in increasing order;
3: for each pm ∈ P do
4: ϕ(m) = n;
5: if (new packet subsequence arises) then
6: subsequenceN ← subsequenceN + 1;
7: for each ci ∈ C do
8: if max(Bi, Aϕ(i)) ≥ min(Bi+1, Aϕ(i+1)) then
9: ci = 0;

10: else
11: ci = min(Bi+1, Aϕ(i+1))−max(Bi, Aϕ(i));
12: while subsequenceN 6= 1 do
13: Select the minimal ci obeying that pi belongs to one

packet subsequence and pi+1 belongs to another;
14: Combine these two packet subsequences together;
15: Add ci in R;
16: subsequenceN ← subsequenceN − 1;
17: for each ci ∈ R do
18: if Aϕ(i) ≥ Bi then
19: Add i in S;
20: else
21: Add i in T ;
22: Arrange the numbers in S in decreasing order and get
S =< s1, s2, · · · >;

23: Arrange the numbers in T in increasing order and get
T =< t1, t2, · · · >;

24: for each pm ∈ P do
25: ψ(m) = Xs1,s1+1Xs2,s2+1 · · · Xt1,t1+1Xt2,t2+1 · · ·ϕ(m);

Compared with ri, we get:

r′i =
T2− T1

T
∗ ri. (13)

This formula indicates that each flow actually gets the
same proportion of its anticipated rate. It is fair because all
flows are treated equally. What’s more, although applying any
scheduling methods to the given set of packets results in the
same conclusion, our efficiency scheduling algorithm pursues
the minimal T to maximize this proportion.

2) Flows cannot get more service by cheating. ATFQ
computes the timestamps for packets belonging to different
flows respectively. If a flow intentionally enlarges its process-
ing time requirements on some resources, the timestamps of its
packets will stay the same or be magnified, according to Eq.
3 and Eq. 5. Constrained by the size of the time domain, this

flow will get the same or less opportunities to be processed in
this scheduling loop.

3) No flow will be starved. The first packet of a newly
arriving flow will be allocated the maximal timestamp as in Eq.
1, so as to be processed as soon as possible. Packets obeying
the time domain will be processed in the current scheduling
loop. If the size of the time domain is set suitably, each flow
can get at least one opportunity of being processed in every
scheduling loop.

2) Tradeoff between the fairness and efficiency: As we
discussed previously, for maximizing the efficiency, we in-
troduce the concept of time domain to relax the constraint
of the fairness. Actually, the degree of the tradeoff between
the fairness and the efficiency is considerably influenced by
the size of the time domain. Assume two adjacent scheduling
loops, denoted by SL1 and SL2. They are associated with
the time domain [T1, T2) and [T2, T3), respectively. The
efficient scheduling algorithm can get their respective minimal
E, denoted by E1 and E2. The packets in SL1 and SL2 will be
scheduled together in a new scheduling loop, denoted as SL3,
if we adopt the time domain [T1, T3). We can also get the
minimal E for SL3, denoted by E3. Obviously, the sum of E1

and E2 must be no less than E3. Thus, we get the conclusion
that a long time domain prefers more to the efficiency.

On the contrary, a short time domain enables less packets
enter the scheduling loop. The efficient scheduling algorithm is
agnostic to the fairness. So, processing fewer packets in one
scheduling loop will shorten the waiting time between each
flow’s adjacent packets and the difference of flows’ received
service time. In an extreme case, processing just one packet in
every scheduling loop realizes the strict fairness, just as what
DRFQ does. In this setting, the efficient scheduling algorithm
is disabled and ATFQ degrades to pursue only the fairness.
So, we conclude that a short time domain prefers more to the
fairness.

Based on the above discussions, the size of the time domain
can be taken as a metric to measure the degree of the
tradeoff between the fairness and the efficiency. Inspired by
the congestion control scheme of TCP/IP, as a suggestion,
the size of the time domain can be adjusted according to a
given threshold, denoted by Thres. At the beginning of every
scheduling loop, it will be set as:

Thres =
n ∗ STD

γ
, (14)

where n denotes the number of flows, STD indicates the size
of the time domain and γ is set as an empirical value. We will
respectively record the received active time of each flow. If the
difference between the maximum one and the minimum one
exceeds Thres, it means the size of the time domain should
be reduced in the next scheduling loop. Otherwise, it should
be enlarged. In this way, the highest scheduling efficiency can
be achieved while desperately ensuring the fairness.

V. PERFORMANCE EVALUATION
We first describe the experiment settings in details. We

then evaluate the fairness of ATFQ, including the data rate



allocation and the service difference. We finally evaluate the
efficiency of ATFQ by measuring the packet delay, the packet
completion time and the resource utilization.

A. Experiment settings

For comparing ATFQ with prior packet scheduling methods,
we follow the measurement data used in DRFQ. Middlebox-
es perform a variety of functions. The packets undergoing
different functions have variable processing time on diverse
resources. However, the processing time of each packet on
diverse resources follows an approximate liner model to the
packet size [4]. According to such an observation, the process-
ing time of each packet on a specified resource can be denoted
as αx + β, where x is the size of the packet, α and β are
parameters associating with the function. Table II lists the CPU
processing time for packets undergoing different functions.

In our evaluation, packets will be sent to the link after
being processed on the CPU. We set the link bandwidth
as 400 Mbps, so as to congest flows on the CPU and the
link differently. What’s more, we process x packets in every
scheduling loop and denote this particular implementation of
ATFQ as ATFQ-x. Although the size of the time domain
varies dynamically with a given value of x, only those packets
obeying the time domain will be scheduled in the current
scheduling loop. This design is motivated to avoid the packet
reordering problem. For some flows, their packets should
be transmitted and received sequentially, e.g., TCP flows.
However, the efficient scheduling algorithm is agnostic to the
packet sequence. Allowing at most one packet of each flow
enter the scheduling loop and correspondingly changing the
value of x can perfectly solve this problem. It should be noted
that ATFQ-x is not an off-line scheduling method. All the
packets in the queue will be processed in one scheduling loop
if the number of packets is less than x.

B. Data rate allocation for flows

Data rate is usually the main concern for flows. We measure
the achieved data rate for flows under the strict DRFQ and our
ATFQ. The strict DRFQ pursues the equalization of the pro-
cessing time on flows’ dominant resources and is vulnerable
to the shift of the dominant resources. The strict ATFQ means
the ATFQ-1. We simply denote the four applications listed in
Table II as IPSE, SM, BF and RE. Four flows undergo each
of these four applications and their packet sizes are set as
1000 byte, 800 byte, 200 byte and 600 byte, respectively. At
the beginning, three flows resulting from IPSE, SM and RE
arrive. After two seconds, the flow resulting from BF arrives.

TABLE II
THE PROCESSING TIME ON THE CPU FOR DIFFERENT APPLICATIONS.

Application CPU Processing Time (µs)
IPSec Encryption 0.015x+84.5
Statistical monitoring 0.0008x+12.1
Basic forwarding 0.00286x+6.2
Redundancy Elimination 0.006987x+10.97

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

Time (s)

R
at

e 
(M

bp
s)

 

 

IPSE SM BF RE

(a) Data rate allocation under the strict DRFQ.
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(b) Data rate allocation under the strict ATFQ.

Fig. 5. Data rate allocation for flows.

At the fourth second, each flow exchanges its processing time
on the CPU and the link to shift its dominant resource. The
comparison results are illustrated in Fig. 5.

As shown in Fig. 5(a), in the first two seconds, each of
the three flows gets nearly 34.4% of its anticipated data rate
under the strict DRFQ. From the second to the forth second,
each of the four flows gets nearly 21.6% of its anticipated data
rate. Until now, DRFQ reasonably allocates the data rate for
flows and each of them achieves almost the same proportion
of its anticipated data rate, just as what we discussed in
Section III-A. However, after the forth second, the four flows
encounter drastic jitter on their data rate for strictly pursuing
the equivalent of the processing time on their respective
dominant resources. At almost the tenth second, the data rate
allocation recovers to the normal level. This phenomenon also
verifies that DRFQ is vulnerable to the shift of the dominant
resource.

Fig. 5(b) plots the scheduling result under the strict ATFQ.
At the beginning, each of the three flows also gets nearly
34.4% of its anticipated data rate. After two second, the forth
flow arrives and each of the four flows gets nearly 21.6% of
its anticipated data rate and keeps it until the end. In other
words, ATFQ is immune to the shift of the dominant resource
and provides more fair and stable data rate allocation for flows
in a changeable scenario.

C. The difference among the received active time of flows

The difference among the received active time of flows
is the most important metric to measure the fairness. Here
we take the active time as the service time. In the following
experiments, we consider 20 flows, resulting from the four
aforementioned applications, to compare the performance of
DRFQ and ATFQ. Flows 1-5 belong to the IPSE. Their packet
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(a) Flow 3.
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(b) Flow 8.
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(c) Flow 13.
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(d) Flow 18.

Fig. 7. The CDF of delay between adjacent packets.
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Fig. 6. The maximal difference of flows’ received active time.

sizes are set as 200 byte, 400 byte, 600 byte, 800 byte and
1000 byte, respectively, so as to bottleneck their packets on
different resources. With the same setting of the packet size,
flows 6-10, flows 11-15 and flows 16-20 belong to the SM, BF
and RE, respectively. Note that such 20 flows are backlogged
and contain totally one million packets.

Under the strict DRFQ and ATFQ-1, the maximal difference
among the received active time of flows can be bounded within
a small range. Their distinctions are so small that we only
depict the strict DRFQ in Fig. 6. Even ATFQ-10 overlays with
the strict DRFQ closely. In the case of ATFQ, the difference
among the received active time of flows directly depends on
the number of packets processed in each scheduling loop.
Under ATFQ-10 and ATFQ-20, this value is very small,
roughly below 100 µs. So they make almost the same fairness
guarantee as the strict DRFQ. Processing more packets in each
scheduling loop, e.g., 50 packets or 100 packets, increases this
value accordingly.

D. The delay between adjacent packets

As for a flow, the delay between its adjacent packets, i.e.,
the interval between the start times of adjacent packets, is an
important metric to evaluate the received quality of service.
Some real-time applications and delay sensitive flows cannot
tolerate a long delay between its adjacent packets.

For the given 20 flows, we measure the delay between each
flow’s adjacent packets. Without loss of generality, we select
four flows undergoing different functions, i.e., flow 3, flow 8,
flow 13 and flow 18, and illustrate the measurement results
in Fig. 7. Intuitively, ATFQ may have a longer delay between
adjacent packets than DRFQ, since it relaxes the constraint of
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Fig. 8. Promotion of the completion time for packets of flow 1.
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Fig. 9. The resource utilizations under DRFQ and ATFQ.

the fairness to improve the efficiency. However, as illustrated
in Fig. 7, benefiting from higher resource utilization, all flows
achieve a shorter average delay between adjacent packets
under ATFQ-20 than the strict DRFQ. Flow 3 has the maximal
processing time difference on diverse resources and maximally
shortens the delay between its packets. Obviously, with shorter
inter-packet delay, all the flows can be transmitted quicker
under ATFQ than DRFQ.

E. The promotion of the packet completion time

An efficient scheduling method processes more flows or
packets within the same time interval. In other words, as for
the same packet, it gets earlier completion time under a more
efficient scheduling method. So we measure the completion
time for the given one million packets to quantize the time
saving under ATFQ, compared to DRFQ.

Actually, as our evaluations verified, all the 20 flows get the
approximate promotion on the packet completion time. Here
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(a) The CPU occupancy for flows.
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Fig. 10. The resource occupancy for flows under DRFQ and ATFQ.

we take flow 1 as an example and illustrate the measurement
results in Fig. 8. Under the strict DRFQ, the final completion
time for processing 10 thousands of its packets is roughly
18.1 seconds. But under ATFQ-20, the final completion time
for processing the same number of packets is 16.3 seconds,
saving up almost 10% of the processing time than DRFQ. In
other words, under the strict DRFQ, about 9900 packets can
be processed in 18 seconds, but AFTQ-20 processes 11000
packets within the same time. This is the most important
benefit resulting from relaxing the fairness to improve the
efficiency.

F. The promotion of the resource utilization

Finally, we measure the resource utilizations of the CPU
and the link under DRFQ and ATFQ. As illustrated in Fig. 9,
only 86.42% of the CPU and 61.84% of the link are utilized
under the strict DRFQ. Meanwhile, ATFQ-1 achieves nearly
the same resource utilizations as DRFQ. In the case of ATFQ-
5, the resource utilizations of the CPU and the link respectively
grow up to 92.23% and 66%. Furthermore, under ATFQ-20,
the resource utilizations rise up to 96.06% and 68.74%. That
is, enlarging the number of packets being processed in every
scheduling loop will improve the resource utilization, the same
as the efficiency of ATFQ. However, there is an upper bound
for the promotion of the resource utilization, because not all
the time gap can be eliminated.

Furthermore, we measure the resource occupancy, i.e., the
ratio of the processing time to the final completion time, for
the given 20 flows under the strict DRFQ and ATFQ-20. As
illustrated in Fig. 10, since flows have shorter completion time
under ATFQ than DRFQ, they get higher resource occupancy

under ATFQ. What’s more, ATFQ realizes more reasonable
resource allocation than DRFQ. That is, those CPU-bounded
flows get more promotion on the CPU occupancy and those
link-bounded flows achieve more promotion on the link occu-
pancy.

VI. CONCLUSION

In the setting of a multi-resource environment, how to
ensure the quality of service for flows comes out to be a chal-
lenge in recent years and attracts lots of attention. Prior packet
scheduling methods take the fairness as the only scheduling
objective, but suffer from enormous waste of resources, which
on the contrary influences the quality of service for flows. In
this paper we discover that the fairness and the scheduling
efficiency are not opposite. With the guarantee of the former,
the latter can be improved by a large extent. Based on this
observation, we design ATFQ, a novel packet scheduling
method in a multi-resource environment, and take both the
fairness and the efficiency as the scheduling objectives. As
verified in the performance evaluation, flows can achieve fair
service under the guarantee of the active time fairness. What’s
more, benefiting from higher resource utilization, all the flows
achieve better QoS in many aspects.
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