
1132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

Passive Diagnosis for Wireless Sensor Networks
Yunhao Liu, Senior Member, IEEE, Kebin Liu, and Mo Li, Member, IEEE

Abstract—Network diagnosis, an essential research topic for
traditional networking systems, has not received much attention
for wireless sensor networks (WSNs). Existing sensor debugging
tools like sympathy or EmStar rely heavily on an add-in protocol
that generates and reports a large amount of status information
from individual sensor nodes, introducing network overhead
to the resource constrained and usually traffic-sensitive sensor
network. We report our initial attempt at providing a lightweight
network diagnosis mechanism for sensor networks. We further
propose PAD, a probabilistic diagnosis approach for inferring
the root causes of abnormal phenomena. PAD employs a packet
marking scheme for efficiently constructing and dynamically
maintaining the inference model. Our approach does not incur
additional traffic overhead for collecting desired information.
Instead, we introduce a probabilistic inference model that encodes
internal dependencies among different network elements for
online diagnosis of an operational sensor network system. Such
a model is capable of additively reasoning root causes based on
passively observed symptoms. We implement the PAD prototype
in our sea monitoring sensor network test-bed. We also examine
the efficiency and scalability of this design through extensive
trace-driven simulations.

Index Terms—Diagnosis, passive, sensor networks.

I. INTRODUCTION

W IRELESS SENSOR NETWORKs (WSNs) have been
widely studied for enabling various applications such

as environment surveillance, scientific observation, traffic mon-
itoring, etc. [14], [28]. A sensor network typically consists of
a large number of resource-limited sensor nodes working in a
self-organizing and distributed manner. Having made increasing
efforts [6], [7], [10]–[12], [16], [18]–[20], [27], [31] on the ro-
bustness and reliability of WSNs under crucial and critical con-
ditions, researchers, however, have done little work targeting
the in-situ network diagnosis for testing operational sensor net-
works. It is of great importance to provide system developers
useful information on a system’s working status and guide fur-
ther improvement to or maintenance on the sensor network.

Due to the ad hoc working style, once deployed, the inner
structures and interactions within a WSN are difficult to observe
from the outside. Existing works for diagnosing WSNs mainly
rely on proactive approaches, which implant debugging agents

Manuscript received October 12, 2008; revised June 22, 2009 and September
17, 2009; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor D.
Agrawal. First published December 18, 2009; current version published Au-
gust 18, 2010.This work was supported in part by NSFC/RGC Joint Research
Scheme N_HKUST602/08, National High Technology Research and Develop-
ment Program of China (863 Program) under Grant 2007AA01Z180, National
Basic Research Program of China (973 Program) under Grant 2006CB303000,
and NSF China Key Project 60736016 and 60533110.

The authors are with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Kowloon, Hong Kong
(e-mail: liu@cse.ust.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2009.2037497

Fig. 1. OceanSense project.

into sensor nodes, periodically reporting the internal status in-
formation of each node to the sink, such as component failures,
link status, neighbor list, and the like. For example, Zhao et al.
[33] propose to scan the residual energy and monitor param-
eter aggregates including link loss rate and packet count. Such
information is collected locally at each node and transmitted
back to the sink for analysis. Sympathy [23] actively collects
run-time status from sensor nodes like routing table and flow in-
formation and detects possible faults by analyzing node status
together with observed network exceptions. The proactive infor-
mation generation and retrieval exerts extra computational op-
erations on sensors and imposes a large communication burden
on a WSN, which is usually fragile at high-traffic loads. Those
approaches work more like debugging or evaluation [26] tools
before the system is released for use outside laboratory settings.
While such tools are effective for offline debugging when sensor
behavior and network scale can be strictly controlled, they may
not be suitable for in-situ network diagnosis of an operational
WSN since they continuously generate a large amount of traffic
and aggressively consume computation, communication, and
energy resources. Also, integrating those complex debugging
agents with application programs at each sensor node introduces
difficulties for system development.

This work is motivated from our ongoing sea monitoring
project [4], [30]. As shown in Fig. 1, for this project, we
launched a working prototype WSN consisting of tens of nodes
that float on the sea surface and collect scientific data such as
sea depth, ambient illumination, pollution, and so on. Recently,
in the field deployment tests, we often observed abnormal en-
ergy depletion that never occurred in the controlled laboratory
experiments. We suspect that such a phenomenon is due to the
usage of the MultiHopRouter (integrated in SURGE) compo-
nent that frequently switches the optimized routing tree of the
network owing to the highly instable environment of the sea.
We also observed other problems on the sink side such as high
delay of data sampling and unbalanced packet loss. Fast and
accurate identification of the root causes is necessary before
taking any further action such as issuing reboot messages to
certain nodes or physically examining the suspicious links.
With current debugging tools, it is indeed difficult to integrate

1063-6692/$26.00 © 2009 IEEE

LIU et al.: PASSIVE DIAGNOSIS FOR WIRELESS SENSOR NETWORKS 1133

their agents with our application programs. It is even worse if
we implant proactive information collectors in the network,
which would inevitably speed up the depletion of energy and
rapidly reduce the expected lifetime of the sensor network.

In this study, we propose an online diagnosis approach
that passively observes the network symptoms from the sink.
Using probabilistic inference models, this approach effectively
deduces the root causes of abnormal symptoms in the network.
Compared to proactive debugging tools, the passive diagnosis
approach observes data from routine application packets for
back-end analysis. It can also be maintained in a running
system at lightweight cost, thus it is expected to accommodate
the application system in a timely manner without degrading
performance.

Inference-based network diagnosis methods have been
widely investigated and applied in enterprise networks [5].
Various types of inference models, both deterministic and
nondeterministic, have been proposed for inferring the root
causes of service failures. Most models are built on expert
knowledge or trained from historical data from the networks.
The construction of such models can be very complicated, and
once constructed, the models are often viewed as remaining
unchanged for a relatively long period [5], as enterprise net-
works are usually stable with few dynamics in their structures.
Compared to enterprise or static networks, however, sensor
networks have the following unique features: 1) sensor nodes
have extremely limited computational and energy resources;
2) the network topology is highly dynamic due to the instable
environment and acquiring prior knowledge of the network is
difficult; 3) the individual sensor nodes are error-prone. Such
conditions make existing active approaches for static network
diagnosis infeasible. Thus, WSNs cannot easily adapt to such
slow start approaches as sensors are self-organized without
any prior information on the dependencies among network
elements. The high dynamics of the WSN structure also leads
to the infeasibility of those inference models built from static
data.

We address the above challenges as follows. First, we intro-
duce a packet marking scheme, which marks the regular routine
communicating packets to continuously reveal their communi-
cation dependencies within the network. Using the output of the
scheme, the sink constructs and dynamically maintains a prob-
abilistic inference model. This scheme works in a lightweight
manner without any extra transmission in the network and can
adapt to frequent network changes. Second, we employ a hierar-
chical inference model that captures multilevel dependencies in
the network. The hierarchical model can be constructed based
on incomplete information, and it is able to efficiently handle
the network dynamics by updating only the changed parts. This
model takes both positive and negative symptoms as input and
reports the inferred posterior probability of possible root causes.
Third, we design an online inference engine capable of addi-
tively reasoning the root causes such that it works even with
incomplete or suspicious inputs in a nondeterministic manner.
The major contributions of this study are as follows.

To the best of our knowledge, we are the first to investigate a
passive method of diagnosing the wireless sensor networks.

1) According to the unique features of sensor networks, we
design an efficient packet marking scheme that dynami-

cally reveals the inner dependencies of sensor networks
without injecting extra transmissions.

2) We propose hierarchical inference models that capture the
multilevel dependencies among the network elements and
achieve high accuracy. We further introduce a fast infer-
ence scheme that reduces the computational complexity
and is thus scalable for online diagnosis in large-scale
WSNs.

3) We implement our diagnosis approach, PAD, and test its
effectiveness in our sea monitoring project with 24 sensors.
The results of our field test show that PAD indeed helps in
exploring the root causes of observed symptoms. Relying
on the output of PAD, we have successfully improved our
application programs.

4) We further analyze and evaluate the scalability and ef-
fectiveness of PAD design through extensive simulations
under varied conditions using the trace we collect from the
prototype implementation.

The rest of this paper is organized as follows. Section II intro-
duces related work. Section III describes the framework of our
system. We introduce the packet marking scheme in Section IV
and discuss the two inference models based on Belief Network
and Causality Diagram in Section V. In Section VI, we present
our implementation and simulation results. We conclude this
work in Section VII.

II. RELATED WORK

Most existing approaches for sensor network diagnosis are
proactive, in which each sensor employs a debugging agent to
collect its status information and reports to the sink by period-
ically transmitting specific control messages. Some researchers
propose to monitor sensor networks by scanning the residual
energy [33] of each sensor and collecting the aggregates of pa-
rameters of sensors where in-network processing is leveraged.
By collecting such information, the sink is aware of the network
conditions. Some debugging systems [23], [29] aim to detect
and debug software failures in sensor nodes. For example, Clair-
voyant [29] focuses on debugging sensor nodes at source level
and enables developers to wirelessly connect to a remote sensor
in the network and execute standard debugging commands on
that node including break, step, and the like. Sympathy [23] is
an advanced debugging tool that detects and debugs the failures
in a sensor network. It actively collects in-network information
periodically from each sensor node such as neighbor list, traffic
flow, and the like and analyzes the network status at the sink. By
carefully selecting an optimal set of information metrics, Sym-
pathy aims at minimizing the diagnosis cost so as to be appli-
cable to resource-limited sensor networks. It also applies an em-
pirical decision tree to determine the most likely root causes for
an observed exception.

Much effort has been expended on network diagnosis for
enterprise networks. Commercial tools [1]–[3] independently
monitor servers and routers with various control messages, and
alerts are automatically generated from the implanted agents
in different network equipment. Those tools, being effective
for diagnosing large-scale networks, are too complicated and
energy-consuming for resource-constrained sensor networks.
There have been some passive diagnosis approaches proposed
for enterprise networks that collect a network’s operational

1134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

Fig. 2. PAD system overview.

status from routine data packets so as to deduce the possible
root causes of exceptions by an inference model. For example,
Score [17] troubleshoots via shared risk modeling. It adopts a
simpliÞed two-level graph as the inference model and formu-
lates the problem of locating fault roots as a minimal set cover
problem. Kandulaet al. explore the bipartite graph inference
model and propose Shrink, introducing a probabilistic infer-
ence scheme [15]. The bipartite graph model approximates
the dependencies in enterprise networks and greatly simpliÞes
the complexity of the inference process. Steinder and Sethi
[24], [25] also assume a bipartite graph model and apply Belief
Networks [21] with the bipartite graph to represent relations
among links and end-to-end communications. Shiet al. [22]
present a fault diagnosis approach for general static complex
systems based on Causality Diagram. The above schemes either
require preknowledge of the network dependencies, which are
obtained through Shared Risk Link Groups or SNMP in a
relatively stable enterprise network, or adopt simpliÞed models
to approximate the network dependencies. A WSN, however,
is featured by its hierarchical multilevel structures, which can
hardly be approximated by the bipartite graph model. It is also
unpractical to maintain the network dependencies as stable
inputs in highly dynamic and self-organized sensor networks.

The recently proposed Sherlock is the only work that adopts a
multistate and multilevel inference graph for the network diag-
nosis [5]. They use a scoring function to derive the best explana-
tions (root causes) for observed service exceptions. In order to
avoid NP-hard computation complexity, they assume that there
are at most a small constant number of failures in the enter-
prise network. This assumption is not valid for the unreliable
and lossy WSNs. Guoet al.[13] tackle the problem of detecting
nodes with faulty readings.

III. SYSTEM FRAMEWORK

We view the sensor network as a method for data acquisi-
tion in which source nodes periodically sample data and deliver
them back to the sink through multihop communication. We do
not assume any speciÞc routing strategy, that is, our approach
deals with networks of various communication topologies such
as spanning tree or directed acyclic graph (DAG).

We design a passive diagnosis approach, PAD, for such sensor
networks. PAD aims to help network managers explore the root
causes of exceptions in a running sensor system. PAD implants
a tiny lightweight probe into each sensor node that sporadically
marks routine application packets passing by so that the sink can

reassemble a big picture of the network conditions from those
small clues. Nevertheless, information from marking probes is
quite limited and not sufÞciently accurate. PAD employs a prob-
abilistic model to infer the statuses of unobservable network el-
ements and reveal the root faults in the network. PAD denotes
the observed abnormal situations as negative symptoms such as
a long time delay of data arrival or frequent packet loss. It de-
notes any successful packet reception as positive symptoms. The
inference model inputs both negative and positive symptoms to
derive network statuses.

As illustrated in Fig. 2, PAD is mainly composed of four
components: a packet marking module, a mark parsing module,
a probabilistic inference model, and an inference engine. The
packet marking module resides in each sensor node and sporad-
ically marks routine application packets passing by. At the sink
side, the mark parsing module extracts and analyzes the marks
carried by the received data packets. The network topology can
thus be reconstructed and dynamically updated according to the
analysis results. The mark parsing module also generates pre-
liminary diagnosis information such as packets loss on certain
links, route dynamics, and so on. The inference model builds a
graph of dependencies among network elements based on the
outputs from the parsing module. Using the inference model
and observed negative and positive symptoms as inputs, the in-
ference engine is able to yield a fault report, which reveals the
root causes of exceptions by setting the posterior probabilities
of each network component being problematic. The inference
results are also taken as feedback to help improve and update
the inference model.

IV. PACKET MARKING

Since a sensor network has a self-organized time-varying
network structure, unlike the case in an enterprise network, no
prior knowledge can be obtained for constructing the inference
model. Also, as a WSN topology is highly dynamic, we need
to acquire the network statuses continually to maintain the
topology in real time. To address the above requirements, we
design a packet marking algorithm in PAD, which dynamically
captures the network topology and extracts the inner dependen-
cies among network components. Before the analysis results
are directed to the inference engine for further reasoning, we
can generate a preliminary diagnosis report on some basic
network exceptions.

The main operation of this marking algorithm is to let sensor
nodes stamp their IDs on passing data packets. Due to the size

LIU et al.: PASSIVE DIAGNOSIS FOR WIRELESS SENSOR NETWORKS 1135

Fig. 3. The data structures for packet marking scheme. (a) A marked data
packet. (b) Cache in sensor node. (c) Path updating.

limitations of the data packets used in sensor networks, however,
the marking scheme only adds 2 bytes to each data packet that
records one node ID. During the packet delivery, each packet is
marked by only one selected sensor node based on a set of rules.
At the sink side, the mark parsing module traces back the paths
from each source node through analyzing sporadically marked
packets. Through assembling the paths from different source
nodes, the network topology can be reconstructed along with
the regular data delivery of the system. If the network remains
static, the packet marking process automatically converges and
stops after the entire network topology is constructed. When net-
work conditions vary, such as when packet loss or route changes
occur, the packet marking process restarts somewhere close to
the exceptional event. A strength of this design is that it does
not inject any extra message into the network and strictly limits
the overhead of marks attached to each data packet.

A. Marking Scheme on Sensor Nodes

Fig. 3(a) depicts an example of marked data packet. We as-
sume that each original data packet contains: 1) a source node
ID denoting the source node of this packet; and 2) a sequence
number identifying the packet. If there is no such information
recorded in the application, the marking scheme adds them to
the packets. The mark added to the original packet consists of
a pass node ID field that records the ID of a sensor that partici-
pates in delivering this packet and a hop to source field recording
the number of hops from the source node to the marking node.
When the source node issues a new data packet, it leaves the
pass node ID field empty and sets the hop to source field to 0.

Every intermediate node maintains a cache for its down-
stream source nodes. As illustrated in Fig. 3(b), each cache
entry consists of a source node ID and the sequence number
of the recently received packet from the source. We call two
sequence numbers of a source continuous if the first sequence
number is larger than the latter one by 1.

As shown in Algorithm 1, upon receiving a packet, an inter-
mediate node first checks whether the packet has been marked.
If yes (the pass node ID is not empty), it forwards the packet
with no further operations. Otherwise, the node checks its own
cache. If there is no entry for the source node ID of this packet,

it marks the packet by filling the pass node ID field with its own
ID. It also creates a new entry for this source node in its cache
and records the sequence number for the packet. If there ex-
ists an entry in the cache for the source node and the sequence
number in the packet is continuous with the cache entry, the in-
termediate node updates the cache entry with the new sequence
number. To prevent duplicate marking, the intermediate node
does not fill the pass node ID field, instead it increments the hop
to source field in the packet by 1 and forwards the packet. If
the sequence number of the packet is not continuous with that
recorded in the cache entry, it might be due to the packet loss
or routing dynamics. The intermediate node marks the packet
by filling the packet pass node ID field with its own ID. The
node then updates its cache entry with the new sequence number
of this packet and forwards it. The sink also participates in the
marking process and creates a table recording source nodes and
their packet sequence numbers. Using this marking scheme, the
received packet in the sink records the ID of one intermediate
node in the routing path together with its hop distance to the
source node. We avoid duplicate marks of the same node on the
same path to save communication costs. We can further reduce
the memory usage in each sensor node by organizing its cache
table into bloom filters. Each intermediate node inserts and ex-
tracts the source node information on the bloom filter. The error
rate introduced by the bloom filter introduces negligible adverse
impact in the lossy by-nature sensor network.

Algorithm 1 Packet Marking (packet)

1: if has been marked
2: return;
3: else
4: check cache;
5: if no entry for source node of
6: mark ;
7: create entry with source node ID and sequence number

in ;
8: else if entry exists and sequence numbers are continuous
9: update entry with new sequence number;

10: increase hop to source in by 1;
11: else if entry exists and sequence numbers are not

continuous
12: mark ;
13: update entry with new sequence number;
14: end if
15: end if
16: return;

B. Parsing the Marks
At the sink, the mark parsing module extracts and parses the

marks piggybacked from the received packets. For each source
node, we keep a data structure denoted as path to record node
IDs along the path from the source node to the sink. As shown in
Fig. 3(c), a path contains an array of slots and each slot records
a node ID along the routing path hop by hop. The path also has
a field that records the sequence number of the latest arrived
packet from each source.

On receiving a new packet, the mark parsing module checks
the existence of a path structure associated with its source node.
If there is no such path, it means it is the first time the sink

1136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

has received packets from that source. The sink creates a new
path for the source node and records the source node ID at the
first slot. The mark parsing module then examines whether the
packet has been marked (the pass node ID field has been filled).
If it has been marked, the sink updates the associated slot in the
path to be the recorded node ID according to the hop to source
field in the packet.

For the packets from the recorded path, the parsing module
operates according to the recorded sequence number. We denote

as the difference between the sequence number of the received
packet and the sequence number recorded in the path. If the se-
quence number of the new packet is equal to or less than that
recorded in the path , it means that this is a duplicate
or delayed packet. As information in the duplicate and delayed
packets is usually outdated and may lead to errors in the mark
parsing process, we ignore marks in such packets and do not
update sequence number or other slots for the path. As a matter
of fact, according to our deployment experiences in an opera-
tional sensor network, with a relatively long sampling interval,
this kind of situation is rare. If , the sequence
number recorded in the path is updated by the newly received
packet, and then other slots of the path are accordingly updated
by parsing the mark as Algorithm 2. Normally, without packet
loss, , and we directly add the marked node ID into the
path. Discontinuousness of the sequence numbers in-
dicates that the packet loss occurs, which triggers a preliminary
diagnosis report on packet loss. Besides, the number of packet
losses is quantified as . A mismatch of the recorded pass
node ID in the packet and the recorded node ID in corresponding
slot in the path indicates a route alternation happening at the po-
sition between the hop to source recorded in the packet and its

hops upward. If not so, the marking should have been taken
earlier. The parsing algorithm then generates a preliminary re-
port of a route switch. In such a case, the slots in recorded path
ranging from hops before the hop to source position to the
sink become inaccurate, so we clear all those slots.

Let us look at the example in Fig. 3(c), where a new mark
is received. The pass node ID is , four hops away from the
source. The mismatch between and current node in the
same position of this path indicates a route variation. Now, the
issue is how to determine where the route variation occurs. If
there is no packet loss, it must be node that changes its route
from to . In this case equals 2, indicating that one packet
has just been lost. The situation can be more complicated in-
deed. As illustrated in Fig. 3(c), the route variation can happen
at ; for example, changes its parent node from to ,
and then marks the consequent packet. The packet, however,
gets lost on its way to the sink, so before the next packet marked
by arrives, the sink cannot be aware of the route variation.
Another possible case is that the route switch happens at , but

fails to send the consequent packet to , and then has
to mark the second packet. As the route variation happens, slots
ranging from to sink are sus-
picious. We update to and clear other slots, expecting fur-
ther information. The reception of the packet without any marks
triggers a preliminary report of a successful delivery. The mark
parsing function is presented in Algorithm 2.

The mark parsing module constructs and updates the network
topology with the recorded paths. Once a new packet is received,
the path associated to its source node is updated. This indicates

that all links along the current path have just participated in the
transmission of a packet. For each link in the network topology,
we keep a counter to count the number of transmissions expe-
rienced by this link. Such information facilitates the construc-
tion of the inference model as it tells the strength of the depen-
dency between the parent and its successive nodes. Since links
in sensor networks are usually shared by multiple paths, we do
not need to collect complete path information for all paths be-
fore revealing the entire network topology. Indeed, this scheme
captures the network topology with a small number of packet
receptions, as demonstrated in our field experiment.

One potential issue is that when the sink fails to learn the
information of some path segments and the network topology
is stable, few marks are received. As a result, it will take re-
ally a long time for the sink to learn the missing path segments.
Such a drawback, however, is alleviated due to the sharing fea-
ture of network links, i.e., the missing links can be recovered
from other paths that share them. Such a feature definitely alle-
viates, but does not completely avoid, this problem. To actively
eliminate such a problem, in our implementation we let the in-
termediate nodes periodically clear their local caches. With this
operation, new marks are inserted to packets, and the path in-
formation at sink can be periodically refreshed even when the
network topology is static.

Algorithm 2 Mark Parsing(packet)

1: if p.sourceNodeID has no associated path
2: create new path for p.sourceNodeID;
3: end if
4: ;
5: if //duplicate packet
6: return;
7: else
8: ;
9: end if

10: if //no packet loss
11: if //route

switch
12: ;
13: clear all slots in path after ;
14: generates route switch report;
15: end if
16: else if //packet loss detected
17: generate packet loss report;
18: if //route

switch
19: clear all slots in path after ;
20: ;
21: end if
22: end if

Clearly, in this design we propose to mark simple messages
only, but if we insert more marks into the data packets, we obtain
richer information on the network statuses and make the diag-
nosis process more straightforward. Nevertheless, in resource-
constrained sensor networks, we have to minimize the commu-
nication overhead introduced by our diagnosis model. There-
fore, we choose to only use simplified marks to additively recon-

LIU et al.: PASSIVE DIAGNOSIS FOR WIRELESS SENSOR NETWORKS 1137

struct the network. We give details about this issue in later dis-
cussions. Compared to existing approaches, our approach with
quick reactivity and fast convergence is thus more suitable for
highly dynamic environments.

C. Preliminary Diagnosis Reports
Before the final diagnosis results are obtained from the infer-

ence engine, some preliminary diagnosis reports can be yielded
from the mark parsing module, which help to analyze the net-
work statuses. The preliminary diagnosis briefly infers the fol-
lowing reports.

1) Success delivery report. When the sink receives a packet
without any mark, it indicates a successful delivery along the
current path. This report tells us that the route from the source
sensor node to the sink is still the same and all links along this
path have just conducted a successful transmission that confirms
the active state of those links.

2) Packet loss report. As described above, if the difference
between the sequence number recorded in the path and the se-
quence number of the packet is more than one, it can be inferred
that the packet loss occurs. The number of packet loss is quan-
tified as . In this case, according to our marking scheme,
the packet must have been marked by some intermediate node.
This report can further locate the packet loss location if there is
no route switch accompanying the packet loss.

3) Route Switch Report. The mismatch of the pass node ID
in the packet and the recorded ID in the corresponding slot in
the path indicates that the previous routing path has been altered.
The position of the switch is between the hop to source recorded
in the packet and its hop upward.

V. PROBABILISTIC INFERENCE

The packet mark parsing module provides a coarse abstrac-
tion and incomplete report. At the sink, the successive proba-
bilistic inference helps to reveal the inner dependencies among
different network elements in the sensor network and expose the
hidden root causes of the exterior symptoms. Network elements
are inner correlated, for example, the crash of an upstream node
causes all its children to disconnect from the sink. In contrast,
simultaneous congestion of multiple paths may indicate a high
probability of a malfunction at a common link. Based on such
observations, we explore the dependencies among network el-
ements (link status, sensing function, path status, etc.) on the
constructed communication topology and encode them with a
probabilistic model. Exterior symptoms like delay or loss of data
samples are considered as inputs. When specific symptoms are
observed by our inference algorithm, we can deduce the proba-
bility of the failures of each network element and find the most
probable root causes in real time.

Most existing inference schemes for static enterprise net-
works use the simplified bipartite graph or tree-based inference
model. As the network topologies in sensor networks are highly
dynamic and no prior knowledge can be acquired in advance,
it is difficult to apply the models for static networks in sensor
networks. Instead, we apply a hierarchical inference model to
capture the inner dependencies in sensor networks. The hierar-
chical model is good for encoding indirect dependencies with
its hierarchical structure and can be constructed without com-
plete information. Also, being assembled by many subparts, it
can easily handle the network dynamics efficiently by updating

the changed parts only. We first apply the Belief Network [21]
as our inference model. Belief Network is a well-known prob-
abilistic model that has been widely used in research domains
like artificial intelligence and system engineering. In Belief
Network, each possible root cause or symptom is represented
by a variable. Each variable might have multiple values (e.g.,
1 for a link in active state and 0 for in trouble). Causal rela-
tionships between different variables are denoted as directional
arcs. Inferences can be conducted on this model to deduce the
probability of particular values to our interested variables once
the values of some other variables have been observed (e.g.,
symptoms like the high delay of data samplings). To further
speedup the process, we propose a simplified inference model,
Causality Diagram. According to the characteristics of sensor
networks, we can design a simplified Causality Diagram that
accurately approximates the inference results and reduces the
overhead.

A. Belief Network

A Belief Network (or Bayesian Network) is a directed acyclic
graph (DAG) that represents a set of variables and their proba-
bilistic relationships. Each vertex in the graph denotes a random
variable. In the rest of this paper, we use “vertex” and “variable”
interchangeably. A directional arc from vertex to indi-
cates a causal relation between the two variables in which the
variable associated with the starting vertex acts as the cause
and the variable of is the effect. The cause is called a
parent of the outcome . The strength of the relation between
a parent and its child is defined by the conditional probabilities.
We then formulate a Belief Network as a binary , where

is a DAG and specifies a conditional
probability distribution (CPD) in . Here, repre-
sents the set of vertices in , and denotes all arcs
(or edges). specifies the conditional probability distribution
of each variable given its parents. When the value domain of
variable is discrete, the CPD can be represented as a conditional
probability table (CPT).

Given certain evidence (values of some variables), the Belief
Network can answer three major types of queries [21]: 1) poste-
rior probability assessment; 2) maximum posterior hypothesis;
and 3) most probable explanation. The first type of query, which
estimates posterior probabilities of certain variables given some
evidence variables, best fits our requirements in this work.

B. Inferring Through Belief Network

Our inference model automatically constructs and maintains
a Belief Network from the output of the mark parsing module.
The inference engine accordingly infers from this model hidden
statuses of the network. In our PAD approach, the Belief Net-
work structure is assembled from the current network topology
obtained from the mark parsing module.

1) Constructing a Belief Network: Fig. 4(a) depicts a simple
example topology composed of a sink and three sensor nodes.
The directional edge between two nodes denotes a wireless link
and the direction of data transmitting along the link. There are
five types of variables in our Belief Network, each of which
has the value domain of that denotes a normal or
abnormal working status, respectively.

For each source node, we add a variable to the Belief
Network, which denotes the status of the data reception of the

LIU et al.: PASSIVE DIAGNOSIS FOR WIRELESS SENSOR NETWORKS 1139

Fig. 6. The Causality Diagram.

efficient. In the initial stages, the prior fault probability distribu-
tion of the link and sensing variables are assigned according to
experience data. The value of each is assigned by estimating
the percentage of transmissions delivered through each path in
a connection. Such information is input from the mark parsing
module.

The outputs of the inference process are the status estimations
about the link and sensing variables. Such estimations reveal
deeper understanding of the network operation. For example, a
single link failure might be caused by environmental interfer-
ence to the wireless communications, and multiple weak links
relating to one sensor node might indicate a faulty node. We
have more discussions in Section VI on how we detect the net-
work faults from the output of our inference process.

C. Fast Inference Scheme

The Belief Network model is a widely used tool in dealing
with inference tasks that achieve high performance even with
incomplete or suspicious inputs. The inference process in a gen-
eral Belief Network, however, is NP-Hard [8], and even some
approximate approaches have been proven to be NP-hard [9].
While previous studies in comparatively stable enterprise net-
works are able to simplify [24], [25] the Belief Network into
bipartite graphs or polytrees, the hierarchical multilevel charac-
teristic of sensor networks makes it impractical. To speed up the
inference for large-scale sensor networks, we further propose a
new inference model based on the Causality Diagram [32].

Similar to Belief Network, Causality Diagram is a graphic in-
ference model. Instead of conditional probability, Causality Di-
agram uses dependency strength to represent the relationships
between vertices and exploit logistic computation in the proba-
bilistic inference process.

As shown in Fig. 6, a Causality Diagram is a directed graph
consisting of four types of elements including basic events, in-
termediate events, arc events, and logic gates. Each vertex or arc
in a Causality Diagram denotes an event. Rectangles like de-
note the basic events that are independent causes of other events.
Circular vertices like represent intermediate events that can
be outcomes or causes of other events. An arc connecting two
vertices is called an arc event that specifies a causal relation be-
tween the two events. The associated strength on an arc denotes
the probability that the parent event affects its child event. Note
that if there is no additional parameter on an arc, it means that

Fig. 7. The Causality Diagram constructed from the communication graph.
(a) Network topology. (b) Causality Diagram.

the parent event has an impact on the child event at a probability
of 1. The logic gates like specify how multiple parent events
jointly influence one child event.

Taking the same example network topology in Fig. 4, Fig. 7
shows how to construct a Causality Diagram for our inference
engine. Different from that in Belief Network, each vertex in a
Causality Diagram denotes a fault event. Those vertices without
parents (rectangular in shape) are basic events that are inde-
pendent root causes. Other circular vertices denote intermediate
events.

The traditional inference algorithm is NP-hard [32] on gen-
eral Causality Diagrams and is thus infeasible for our approach.
Nevertheless, in this design, due to the characteristics of WSNs,
we are able to use the specifically defined OR and Select gates to
model the dependency relationships between node behaviors. In
our model, the OR gate represents the causal relationship where
the occurrence of any of the parent events will cause the child
event. Select gate describes the relationship that the child event
is affected by one of its parent event according to a certain prob-
ability distribution. This enables us to apply a fast inference
scheme, leveraging the particular structure of our model. Our
scheme contains four stages:

1) We represent each intermediate event by its first-order cut
set expression.

2) We adopt an early disjointing mechanism. Before gener-
ating the final cut sets expressions, we directly disjoint
the expressions. Based on the definition of the Select gate,
the cut sets in a expression of the connection failure events
are already exclusive.

3) We calculate final disjoint cut sets expressions
by iteratively replacing intermediate events in each expression.
Since all negative events generated from step 2 are basic events,
we avoid the complex NOT operations and the replacement
process can be operated efficiently.

4) We estimate the posterior probabilities of user specified
events. Given observed events (evidences), we can calculate

1140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

the posterior probability of interested events (root causes).
. According to the Bayesian formula

Both and have been expressed as , and the re-
sult of operating logic AND on two expressions is still
a expression. Hence, expressions on numerator and de-
nominator are both , and the posterior probability of
can be calculated algebraically.

D. Characterizing the Faults

After the inference process, both the packet mark parsing
module and the inference engine output the fault reports about
the sensor network statuses. In this section, we discuss how PAD
further characterizes the faults in the network through analysis
of the fault reports. In PAD, we trace the fault reasons by char-
acterizing their fault patterns as follows.

1) Physical damage. In many field applications, physical
damage might occur and destroy a portion of or the entire
hardware of sensor nodes.

2) Software crashes. Software crashes include local problems
on the sensor node such as a send queue overflow or busy CPU
in those nodes that are physically intact. PAD detects the sensor
nodes in a software crash by both the diagnosis information
from the mark parsing module and the posterior probability es-
timations from the inference engine.

3) Network congestion. Network congestion relates to a
group of sensors or traffic flows. The occurrence of network
congestion usually leads to a high packet loss rate within the
influenced region. Due to such a feature of this type of faults,
the observed symptoms are usually temporal and distributed
across a large time and space span.

4) Environmental interferences. Environmental interference
can significantly degrade the performance of WSNs even
without any internal problems within the WSN itself. The
environment interference usually has high spatial correlation.

5) Application flaws. As the application programs might con-
tain flawed components, the network might suffer from some
inefficiency that does not lead to system crashes but consumes
computational or communicational resources.

VI. EVALUATION

We conduct comprehensive simulations and implement field
experiments to evaluate the performance of PAD. For the imple-
mentation, we used the BNJ implementation of the Belief Net-
work inference as part of our inference engine. We implemented
the packet marking scheme for TelosB motes on the TinyOS
platform with nesC language. We implemented the mark parsing
module on the java based back end.

A. Simulations

We first examine the effectiveness and efficiency of PAD
through simulations. We simulate a sensor network in which
sensor nodes are deployed on a two-dimensional space, with
the sink located at the center. Sensors periodically generate

Fig. 8. Convergence time on varying network sizes.

data and deliver to the sink through multihop routes. Two
routing schemes are applied in the simulation. Various types of
faults are inserted into links or nodes according to different test
settings. We use a cutoff threshold to detect the failures. In the
following tests, if the output posterior probability of a certain
network element (for example a link) to be faulty is higher than
50%, we will regard this element as failure.

We apply two metrics for estimating the performances of in-
ference models, the detection ratio and false positive ratio. De-
tection ratio is the ratio between the number of faults founded
and the number of all faults. False positive ratio is the ratio be-
tween the real failures detected and all failure reports generated
by our diagnosis system.

1) The Efficiency of the Packet Marking Scheme: We eval-
uate the convergence time of the packet marking scheme under
various network conditions. In these tests, we simulate a data
acquisition network using both spanning tree-based routing
and DAG-based routing schemes. Each source node samples
environment data and generates a new packet every 2 s. Dif-
ferent routing schemes lead to different types of topologies.
The notation Tree denotes a spanning tree topology rooted at
the sink, and the notation DAG denotes a multipath routing
strategy where each sensor node has multiple parents. Besides
the routing topologies, the link loss rate also impacts the
topology reconstruction. Thus, we evaluate the performance of
our approach with different link loss rates. Here, no link loss
indicates that all packet transmissions are guaranteed to deliver,
and 10% link loss means that each link has 10% packet loss
rate. Under the latter setting (10% link loss), it is difficult for
a source node far away from the sink to deliver its packets to
the sink since a packet has high probability to get lost on a long
path.

In the first test, we measure the convergence time of recon-
structing the entire network topology. The results are shown in
Fig. 8. Without packet loss, the topology reconstruction can be
accomplished very quickly. According to the results in Fig. 8,
the complete topology of a sensor network with up to 300 nodes
can be rebuilt within 20 s, which is very efficient. The DAG net-
work has a more complicated topology than Tree, so the marking
scheme requires more time to figure it out. When there is link
loss, the convergence time of both topologies increases since
many packets together with the marks get lost on their way to the
sink. As the network size increases, the growing speed of con-
vergence time is less than the linearity, indicating a good scal-
ability of this approach. In the second test, we assume that the
network topology has already been constructed at sink. Then,

LIU et al.: PASSIVE DIAGNOSIS FOR WIRELESS SENSOR NETWORKS 1141

Fig. 9. Recovering time on varying network sizes.

we manually inject route dynamics into the network and mea-
sure the average time needed for capturing these alternations.
From the results shown in Fig. 9, we find similar trends as that
in Fig. 8. The recovering time increases when there is packet
loss. Besides, packet loss can occur and lead to a mark at some
hop before the route alternation, which delays the operation
for recording the route alternation. Relatively more time is re-
quired for detecting topology alternations on the more compli-
cated DAG network than the Tree network. The growing speeds
of all curves are less than linearity, and our scheme captures the
dynamics in a large network with up to 300 nodes in around
15 s. According to the above results, our approach has a fast
convergence speed and is able to capture the network dynamics
quickly. Our method is also shown to be scalable with varied
network size.

2) The Performance of Inference Models: We then evaluate
the performance of the two inference models with four different
groups of tests. We inject artificially created errors into the net-
work and let both inference models generate fault reports ac-
cording to the posterior probability estimations.

We first inject sensing failures into sensor nodes and com-
pare the detection ratio and false positive ratio of both models.
We randomly invalidate the sensing capabilities of 10% of the
nodes. BN-Tree and BN-DAG denote inference results of the
Belief Network model on the spanning tree topology and DAG
topology. CD-Tree and CD-DAG represent the inference results
of Causality Diagram model. We vary the network size from
20 to 70 nodes. Fig. 10(a) plots the detection ratios, where we
can see both models achieve detection ratios higher than 85% in
most situations. Belief Network model has a slightly higher de-
tection ratio than Causality Diagram model as it adopts exactly
accurate inference. Fig. 10(b) shows the false positive ratio of
the two models. We see that for both models, the false positive
ratio decreases as the network size increases. By analyzing the
false reports, we find that most false positive reports relate to
the leaf nodes. As those nodes lie on the boundary of the net-
work field and do not relay data for others, if they do not re-
port data to sink, there are few clues as to whether it is due to a
sensing failure or a communication failure. As the network size
increases, the percentage of boundary nodes decreases, so the
false positive ratio becomes lower.

We then inject node failure of both sensing and communi-
cation errors into sensor nodes; see Fig. 11 for the results. As
the network size increases, the detection ratio decreases and the
false positive ratio increases at the beginning (when the number

(a)

(b)

Fig. 10. (a) Sensing failure detection ratio. (b) Sensing failure false positive
ratio.

(a)

(b)

Fig. 11. (a) Node failure detection ratio. (b) Node failure false positive ratio.

of nodes is around 50). Then, after the network size grows be-
yond 50, the detection ratio and false positive ratio become rel-
atively stable with the network size. The performance degrada-
tion at the beginning part of the test is mainly because the system
performance of extremely small networks is much better than
that of general settings. For example, when the network con-
tains only several nodes, the detection ratio can be as high as
more than 90% and false positive ratio can be very low. Such

